Satoshi Mitarai*, Jun Noda, Satoshi Gondaira, Ikuo Uchida and Rikio Kirisawa
Volume5-Issue1
Dates: Received: 2024-01-17 | Accepted: 2024-01-25 | Published: 2024-01-26
Pages: 083-088
Abstract
Background: An excessive demand for N95 respirators occurred during the SARS-CoV-2 pandemic. Therefore, health care workers were obligated to reuse N95 respirators, which were intended to be disposable.
Aim: The primary objective of this study was to establish a standard procedure for safe disinfection or sterilization that does not affect the performance of an N95 respirator.
Methods: As disinfection or sterilization methods, immersion in 70% ethanol, 0.1% hypochlorous acid, 0.3% peracetic acid, 0.2% alkyldiaminoethylglycine hydrochloride aqueous solution, hypochlorous acid water, or plant mineral-activated water, autoclaving, pasteurization and hydrogen peroxide plasma sterilization were used. After sterilization/disinfection, the filtration capacity of each N95 respirator was examined.
Findings: The performance changes in the N95 respirator caused by each sterilization/disinfection method differed for each manufacturer’s product. Seventy percent ethanol, 0.1% sodium hypochlorite aqueous solution, 0.3% peracetic acid aqueous solution, autoclaving, hypochlorous acid water, and plant mineral-activated water significantly deteriorated the performance of N95 respirators. Performance degradation (increased permeability) was observed in 0.2% alkyldiaminoethylglycine hydrochloride aqueous solution and hydrogen peroxide plasma sterilization, and the permeation performance significantly deteriorated by 50–70% in all N95 respirators tested. Only pasteurization resulted in no deterioration in performance, even after five repeated sterilizations.
Conclusion: Verification of sterilization/disinfection methods for the reuse of N95 respirators has shown that the currently recommended hydrogen peroxide plasma sterilization is inadequate as it increases permeability by more than 50% with a single treatment. In this study, pasteurization was found to be the optimal sterilization method.
FullText HTML FullText PDF DOI: 10.37871/jbres1874
Certificate of Publication
Copyright
© 2024 Mitarai S, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Mitarai S, Noda J, Gondaira S, Uchida I, Kirisawa R. Comparative Evaluation of Microorganism Disinfection Methods for N95 Respirators. J Biomed Res Environ Sci. 2024 Jan 26; 5(1): 083-088. doi: 10.37871/jbres1874, Article ID: JBRES1874, Available at: https://www.jelsciences.com/articles/jbres1874.pdf
Subject area(s)
References
- Nogee D, Tomassoni AJ. Covid-19 and the N95 respirator shortage: Closing the gap. Infect Control Hosp Epidemiol 2020; 41: 958. https://doi.org/10.1017/ice.2020.124. [Epub 2020 April 13]. PMID: 32279694, PMCID: PMC7205548.
- Schelhorn JE. Herbers JM. 24Profile: Peter Tsai. Beyond discovery: Moving academic research to the market. Schelhorn JE, Herbers JM, editors. Oxford University Press; 2022. https://doi.org/10.1093/oso/9780197512715.003.0004.
- van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382: 1564-7. https://doi.org/10.1056/NEJMc2004973. [Epub 2020 March 17]. PMID: 32182409, PMCID: PMC7121658.
- Fischer RJ, Morris DH, van Doremalen N, Sarchette S, Matson MJ, Bushmaker T, Yinda CK, Seifert SN, Gamble A, Williamson BN, Judson SD, de Wit E, Lloyd-Smith JO, Munster VJ. Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerg Infect Dis. 2020 Sep;26(9):2253–5. doi: 10.3201/eid2609.201524. Epub 2020 Jun 3. PMID: 32491983; PMCID: PMC7454118.
- Paul D, Mondal SK, Mandal SM. Biologia Futura: Use of biocides during COVID-19-global reshuffling of the microbiota. Biol Futur 2021; 72: 273-80. https://doi.org/10.1007/s42977-021-00069-1. [Epub 2021 February 1]. PMID: 34554548, PMCID: PMC7848239.
- COVID-19 epidemiological update. World Health Organization. 2024.
- Kanno T, Ishihara R, Hatama S, Uchida I. Antigenic variation among recent Japanese isolates of bovine coronaviruses belonging to phylogenetically distinct genetic groups. Arch Virol 2013; 158: 1047-53. https://doi.org/10.1007/s00705-012-1587-1. [Epub 2012 December 27]. PMID: 23269444, PMCID: PMC7086937.
- Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of five decontamination methods for filtering facepiece respirators. Ann Occup Hyg 2009; 53: 815-27. https://doi.org/10.1093/annhyg/mep070. [Epub 2009 October 4]. PMID: 19805391, PMCID: PMC2781738.
- Bergman MS, Viscusi DJ, Heimbuch BK, Wander JD, Sambol AR, Shaffer RE. Evaluation of multiple (3-cycle) decontamination processing for filtering facepiece respirators. J Engineered Fibers Fabr. 2010;5. doi: 10.1177/155892501000500405.
- Kumar A, Kasloff SB, Leung A, Cutts T, Strong JE, Hills K et al. Decontamination of N95 masks for re-use employing 7 widely available sterilization methods. PLoS One 2020; 15: e0243965. https://doi.org/10.1371/journal.pone.0243965. PMID: 33326504, PMCID: PMC7744046.
- Wigginton KR, Arts PJ, Clack HL, Fitzsimmons WJ, Gamba M, Harrison KR et al. Validation of N95 filtering facepiece respirator decontamination methods available at a large University Hospital. Open Forum Infect Dis 2021; 8: ofaa610. https://doi.org/10.1093/ofid/ofaa610. PMID: 33575418, PMCID: PMC7863868.
- Rutala WA, Weber DJ. The Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for disinfection and sterilisation in healthcare facilities. 2008.
- Soontravanich S, Munoz JA, Scamehorn JF, Harwell JH, Sabatini DA. Interaction between an anionic and an amphoteric surfactant. Part I: Monomer-micelle equilibrium. J Surfact Deterg. 2008;11:251-61. doi: 10.1007/s11743-008-1080-8.
- Nazeeri AI, Hilburn IA, Wu D-A, Mohammed KA, Badal DY, Chan MHW, Kirschvink JL. Ethanol-drying regeneration of N95 respirators. medRxiv. 2020. doi: 10.1101/2020.04.12.20059709.
- Faridi-Majidi R, Norouz F, Boroumand S, Nasrollah Tabatabaei S, Faridi-Majidi R. Decontamination assessment of nanofiber-based N95 masks. Environ Sci Pollut Res Int 2022;29:80411-21. https://doi.org/10.1007/s11356-022-20903-w. [Epub 2022 June 18]. PMID: 35716305, PMCID: PMC9206400.
- Cooper J, Csapó A, Ranasinghe R, Jeronimo M, Brockington-Tyhy T, Alawfi S et al. Filtration performance of three models of N95 filtering facepiece respirators following clinical usage and vaporized hydrogen peroxide decontamination. J Hosp Infect 2022; 131: 122-5. https://doi.org/10.1016/j.jhin.2022.09.026. [Epub ahead of print]. PMID: 36272553.
- Brooks JP, Lupfer C, Yang W, Hao W, Kapiamba KF. The effect of hypochlorous acid on the filtration performance and bacterial decontamination of N95 filtering facemask respirators. Am J Infect Control 2022; S0196-6553(22)00540-5. https://doi.org/10.1016/j.ajic.2022.07.013. [Epub ahead of print]. PMID: 35870660.
- Derr TH, James MA, Kuny CV, Patel DR, Kandel PP, Field C et al. Aerosolized hydrogen peroxide decontamination of N95 respirators, with fit-testing and viral inactivation, demonstrates feasibility for reuse during the COVID-19 pandemic. mSphere 2022; 7: e0030322. https://doi.org/10.1128/msphere.00303-22. [Epub 2022 August 30]. PMID: 36040048, PMCID: PMC9599425.
- Sharma S, Wang F, Rao PVK, Agrawal AK, Jassal M, Szenti I et al. Unfolding the effects of decontamination treatments on the structural and functional integrity of N95 respirators via numerical simulations. Sci Rep 2022; 12: 4191. https://doi.org/10.1038/s41598-022-08150-y. PMID: 35264706, PMCID: PMC8906365.
- Iki S, Sekiguchi K, Kurata Y, Shimizu E, Sugiura A, Yuasa H et al. Effects of various physical and chemical disinfection methods on the fine particle collection efficiency of N95 respirators and surgical masks. Jpn J Infect Dis 2022; 75: 341-6. https://doi.org/10.7883/yoken.JJID.2021.663. [Epub 2021 December 28]. PMID: 34980707.