Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

A Bibliometric Analysis: The Application of Robotic Technology in Spine Surgery in the Past 30 Years

Medicine Group    Start Submission

Yuan Zhou, Chongwen Ma, Ziyan Wei and Xuewen Kang*

Volume5-Issue1
Dates: Received: 2024-01-17 | Accepted: 2024-01-25 | Published: 2024-01-26
Pages: 064-082

Abstract

Purpose: The aim of this study is to comprehensively analyze the application of robotic technology in spine surgery and display the current research status in this field.

Methods: To investigate the distribution and characteristics of robotics in spinal surgery, the publications in PubMed and web of science was examined and analyzed. We utilized CiteSpace and VOSviewer to review and visualize academic literature from the previous 30 years on the use of robotic technology in spine surgery.

Results: According to the findings of the research, it indicates that robotics is becoming more widespread in spine surgery, with robotics playing an important role in pedicle screw placement, intraoperative navigation, imaging guidance, and minimizing radiation exposure for surgeons and surgical teams. how to establish a set of standards, how to reduce personnel radiation exposure in the operating room, postoperative follow-up between traditional and robotic surgery, and the prognosis and incidence of complications such as spondylosis, and so on are all topics that will be discussed.

Conclusion: The study looked into the recovery time following robotic surgery, the expense of hospitalization, the robotic technology in terms of time during surgical procedures, blood loss, and implant placement accuracy, which are all topics that will be investigated more in the future. While there are some discrepancies in government, physician, and patient views, expectations, and clinical data for robotic surgery, robots will increasingly be used in areas that demand great precision. The application of robotic technology in spine surgery will be extensive.

FullText HTML FullText PDF DOI: 10.37871/jbres1873


Certificate of Publication




Copyright

© 2024 Zhou Y, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Zhou Y, Ma C, Wei Z, Kang X. A Bibliometric Analysis: The Application of Robotic Technology in Spine Surgery in the Past 30 Years. J Biomed Res Environ Sci. 2024 Jan 24; 5(1): 064-082. doi: 10.37871/jbres1873, Article ID: JBRES1873, Available at: https://www.jelsciences.com/articles/jbres1873.pdf


Subject area(s)

References


  1. Dehghan N, McKee MD. What's new in orthopaedic trauma. J Bone Joint Surg Am 2018;100(13):1158-1164.
  2. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018 Apr;32(4):1636-1655. doi: 10.1007/s00464-018-6079-2. Epub 2018 Feb 13. PMID: 29442240.
  3. Covas Moschovas M, Bhat S, Rogers T, Onol F, Roof S, Mazzone E, Mottrie A, Patel V. Technical Modifications Necessary to Implement the da Vinci Single-port Robotic System. Eur Urol. 2020 Sep;78(3):415-423. doi: 10.1016/j.eururo.2020.01.005. Epub 2020 Jan 17. PMID: 31959548.
  4. Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and Robotics in Spinal Surgery: Where Are We Now? Neurosurgery. 2017 Mar 1;80(3S):S86-S99. doi: 10.1093/neuros/nyw077. PMID: 28350944.
  5. Elswick CM, Strong MJ, Joseph JR, Saadeh Y, Oppenlander M, Park P. Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications. Neurosurg Clin N Am. 2020 Jan;31(1):103-110. doi: 10.1016/j.nec.2019.08.012. Epub 2019 Oct 25. PMID: 31739920.
  6. Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, Hou C, Xu Y, Liu S, Wang G. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron. 2022 Apr 1;201:113932. doi: 10.1016/j.bios.2021.113932. Epub 2021 Dec 29. PMID: 35065388.
  7. Tang C, Liu D, Fan Y, Yu J, Li C, Su J, Wang C. Visualization and bibliometric analysis of cAMP signaling system research trends and hotspots in cancer. J Cancer. 2021 Jan 1;12(2):358-370. doi: 10.7150/jca.47158. PMID: 33391432; PMCID: PMC7738981.
  8. Yang K, Pei L, Wen K, Zhou S, Tao L. Investigating Research Hotspots and Publication Trends of Spinal Stenosis: A Bibliometric Analysis During 2000-2018. Front Med (Lausanne). 2021 Jul 20;8:556022. doi: 10.3389/fmed.2021.556022. PMID: 34354999; PMCID: PMC8330839.
  9. Zhang Y, Wumaier M, He D, Xiao B, Zhang J. The 100 Top-Cited Articles on Spinal Deformity: A Bibliometric Analysis. Spine (Phila Pa 1976). 2020 Feb 15;45(4):275-283. doi: 10.1097/BRS.0000000000003247. PMID: 31999653.
  10. Zhu X, Zhou Y, Yuan G, Shi J, Shi S, Zhang L, Chai R, Du Y, Duan C, Hu Y. Bibliometric analysis of nicotinic acetylcholine receptors channel research (2000-2020). Channels (Austin). 2021 Dec;15(1):298-309. doi: 10.1080/19336950.2021.1882113. PMID: 33615989; PMCID: PMC7901545.
  11. Tian W, Liu B, He D, Liu Y, Han X, Zhao J, Fan M; International Society for Computer Assisted Orthopaedic Surgery. Guidelines for navigation-assisted spine surgery. Front Med. 2020 Aug;14(4):518-527. doi: 10.1007/s11684-020-0775-8. Epub 2020 Jul 17. PMID: 32681209.
  12. Fan M, Zhang Q, Fang Y, Tian W. Robotic solution for orthopedic surgery. Chin Med J (Engl). 2023 Jun 20;136(12):1387-1389. doi: 10.1097/CM9.0000000000002702. Epub 2023 May 11. PMID: 37166216; PMCID: PMC10278749.
  13. Rauter G, Gerig N, Sigrist R, Riener R, Wolf P. When a robot teaches humans: Automated feedback selection accelerates motor learning. Sci Robot. 2019 Feb 20;4(27):eaav1560. doi: 10.1126/scirobotics.aav1560. PMID: 33137742.
  14. Xiao ZR, Xiong G: Xiao ZR, Xiong G. Computer-assisted Surgery for Scaphoid Fracture. Curr Med Sci. 2018 Dec;38(6):941-948. doi: 10.1007/s11596-018-1968-0. Epub 2018 Dec 7. PMID: 30536054.
  15. Liu S, Sun YP, Gao XL, Sui Y. Knowledge domain and emerging trends in Alzheimer's disease: a scientometric review based on CiteSpace analysis. Neural Regen Res. 2019 Sep;14(9):1643-1650. doi: 10.4103/1673-5374.255995. PMID: 31089065; PMCID: PMC6557102.
  16. Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol. 2016 Sep;12(9):513-25. doi: 10.1038/nrneurol.2016.113. Epub 2016 Aug 19. Erratum in: Nat Rev Neurol. 2017 Feb 17;13(3):191. PMID: 27539560.
  17. Bing Z, Rohregger A, Walter F, Huang Y, Lucas P, Morin FO, Huang K, Knoll A. Lateral flexion of a compliant spine improves motor performance in a bioinspired mouse robot. Sci Robot. 2023 Dec 6;8(85):eadg7165. doi: 10.1126/scirobotics.adg7165. Epub 2023 Dec 6. PMID: 38055804.
  18. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7. PMID: 15585584; PMCID: PMC535103.
  19. Marchal Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009;6:20. doi: 10.1186/1743-0003-6-20.
  20. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):380-94. doi: 10.1109/TNSRE.2005.848628. PMID: 16200761.
  21. Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine (Phila Pa 1976). 2007 Jan 15;32(2):193-9. doi: 10.1097/01.brs.0000251863.76595.a2. PMID: 17224814.
  22. Lebedev MA, Nicolelis MA. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev. 2017 Apr;97(2):767-837. doi: 10.1152/physrev.00027.2016. PMID: 28275048.
  23. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1-4 Pt 2):124-8. doi: 10.1159/000099863. PMID: 9711744.
  24. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008 Jun;39(6):1786-92. doi: 10.1161/STROKEAHA.107.504779. Epub 2008 May 8. Erratum in: Stroke.2008 Aug;39(8): e143. PMID: 18467648.
  25. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005 Apr;86(4):672-80. doi: 10.1016/j.apmr.2004.08.004. PMID: 15827916.
  26. Seok S, Wang A, Chuah MY, Hyun DJ, Lee J, Otten DM, Lang JH, Kim S: Design principles for energy-efficient legged locomotion and implementation on the mit cheetah robot. IEEE/ASME Transactions on Mechatronics 2015;20(3):1117-1129.
  27. Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A. Retraining the injured spinal cord. J Physiol. 2001 May 15;533(Pt 1):15-22. doi: 10.1111/j.1469-7793.2001.0015b.x. PMID: 11351008; PMCID: PMC2278598.
  28. Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015;31:132-145. doi: 10.1016/j.mechatronics.2015.04.005
  29. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):38-48. doi: 10.1109/TNSRE.2009.2033061. PMID: 20194054.
  30. Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S. Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci. 1992 Dec;15(4):603-13. doi: 10.1017/S0140525X00072538. PMID: 23302290.
  31. Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003 Dec;16(6):705-10. doi: 10.1097/01.wco.0000102630.16692.38. PMID: 14624080.
  32. Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013 Sep;15(3):174-81. doi: 10.5853/jos.2013.15.3.174. Epub 2013 Sep 27. PMID: 24396811; PMCID: PMC3859002.
  33. Wang S, Wang L, Meijneke C, van Asseldonk E, Hoellinger T, Cheron G, Ivanenko Y, La Scaleia V, Sylos-Labini F, Molinari M et al: Design and control of the mindwalker exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2015;23(2):277-286.
  34. Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006 Oct 11;26(41):10564-8. doi: 10.1523/JNEUROSCI.2266-06.2006. PMID: 17035542; PMCID: PMC6674681.
  35. Bensmaia SJ, Miller LE. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci. 2014 May;15(5):313-25. doi: 10.1038/nrn3724. PMID: 24739786.
  36. Long Y, Zhang Z, Xu Z, Gu E, Lu Q, Wang H, Chen G. Lightweight and powerful vacuum-driven gripper with bioinspired elastic spine. IEEE Robotics and Automation Letters 2023;8(12):8136-8143. doi :10.1109/LRA.2023.3325714.
  37. Li Y, Wei X, Liang Y, Song G. Robot-assisted versus fluoroscopy-guided pedicle screw fixation of thoracolumbar compression fractures. Medicine (Baltimore). 2023 Dec 1;102(48):e36430. doi: 10.1097/MD.0000000000036430. PMID: 38050284; PMCID: PMC10695527.
  38. Sai Sathikumar A, Jacob G, Thomas AB, Varghese J, Menon V. Acetabular cup positioning in primary routine total hip arthroplasty-a review of current concepts and technologies. Arthroplasty. 2023 Dec 1;5(1):59. doi: 10.1186/s42836-023-00213-3. PMID: 38037156; PMCID: PMC10691035.
  39. Lin T, Xie Q, Peng T, Zhao X, Chen D. The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. Heliyon. 2023 Nov 19;9(12):e22523. doi: 10.1016/j.heliyon.2023.e22523. PMID: 38046149; PMCID: PMC10686875.
  40. Vaish A, Migliorini F, Vaishya R. Artificial intelligence in foot and ankle surgery: current concepts. Orthopadie (Heidelb). 2023 Dec;52(12):1011-1016. doi: 10.1007/s00132-023-04426-x. Epub 2023 Aug 25. PMID: 37626240; PMCID: PMC10692015.
  41. Hiltzik DM, Cin MD, Hamama BA, Pawl CJ, Haley HR, Cheng CI, Taha TA. Comparison of Pelvic Landmarks for Leg Length Discrepancy Measurement With Robotic Arm-Assisted Total Hip Arthroplasty. Arthroplast Today. 2023 Nov 7;24:101252. doi: 10.1016/j.artd.2023.101252. PMID: 38023649; PMCID: PMC10665703.
  42. Vardiman AB, Wallace DJ, Booher GA, Toossi N, Bucklen BS. Decreasing the Pedicle Screw Misplacement Rate in the Thoracic Spine With Robot-guided Navigation. Clin Spine Surg. 2023 Dec 1;36(10):431-437. doi: 10.1097/BSD.0000000000001474. Epub 2023 Jun 16. PMID: 37348067; PMCID: PMC10681281.
  43. Narendran N, Nilssen PK, Walker CT, Skaggs DL. New technique and case report: Robot-assisted intralaminar screw fixation of spondylolysis in an adolescent. N Am Spine Soc J. 2023 Oct 5;16:100284. doi: 10.1016/j.xnsj.2023.100284. PMID: 38025938; PMCID: PMC10654584.
  44. Witkowska A, Petre EN, Moussa AM, Santos E, Sarkar D, Lis E, Cornelis FH. Feasibility and Safety of Percutaneous CT-Guided Bone Biopsies in Patients with Cancer Using a Patient-Mounted Robotic System: A Retrospective Analysis of 40 Consecutive Biopsies. J Vasc Interv Radiol. 2023 Dec;34(12):2174-2179. doi: 10.1016/j.jvir.2023.08.040. Epub 2023 Sep 9. PMID: 37673400.
  45. Jiang K, Hersh AM, Bhimreddy M, Weber-Levine C, Davidar AD, Menta AK, Routkevitch D, Alomari S, Judy BF, Lubelski D, Weingart J, Theodore N. Learning Curves for Robot-Assisted Pedicle Screw Placement: Analysis of Operative Time for 234 Cases. Oper Neurosurg (Hagerstown). 2023 Dec 1;25(6):482-488. doi: 10.1227/ons.0000000000000862. Epub 2023 Aug 14. PMID: 37578266.
  46. Castillo J, Soufi K, Zhou J, Kulubya E, Javidan Y, Ebinu JO. Minimally invasive techniques in the surgical management of traumatic pediatric thoracolumbar fractures. World Neurosurg 2023. doi: 10.1016/j.wneu.2023.11.102.
  47. Haider G, Shah V, Johnstone T, Maldaner N, Stienen M, Veeravagu A. Accuracy of predicted postoperative segmental lumbar lordosis in spinal fusion using an intraoperative robotic planning and guidance system. J Neurosurg Sci. 2023 Nov 23. doi: 10.23736/S0390-5616.23.06142-8. Epub ahead of print. PMID: 37997323.
  48. Vasireddi N, Vasireddi N, Shah AK, Moyal AJ, Gausden EB, Mclawhorn AS, Poelstra KA, Gould HP, Voos JE, Calcei JG. High Prevalence of Work-related Musculoskeletal Disorders and Limited Evidence-based Ergonomics in Orthopaedic Surgery: A Systematic Review. Clin Orthop Relat Res. 2023 Nov 21. doi: 10.1097/CORR.0000000000002904. Epub ahead of print. PMID: 37987688.
  49. Rodríguez-León JF, Chaparro-Rico BDM, Cafolla D, Lago F, Castillo-Castañeda E, Carbone G. Design of a novel exoskeleton with passive magnetic spring self-locking and spine lateral balancing. Journal of Bionic Engineering 2023. doi: 10.1007/s42235-023-00445-8.
  50. Knez D, Likar B, Pernus F, Vrtovec T. Computer-Assisted Screw Size and Insertion Trajectory Planning for Pedicle Screw Placement Surgery. IEEE Trans Med Imaging. 2016 Jun;35(6):1420-30. doi: 10.1109/TMI.2016.2514530. Epub 2016 Jan 5. PMID: 26742125.
  51. Falkowski AL, Kovacs BK, Benz RM, Tobler P, Schön S, Stieltjes B, Hirschmann A. In vivo 3D tomography of the lumbar spine using a twin robotic X-ray system: quantitative and qualitative evaluation of the lumbar neural foramina in supine and upright position. Eur Radiol. 2021 May;31(5):3478-3490. doi: 10.1007/s00330-020-07355-x. Epub 2020 Oct 29. PMID: 33119812; PMCID: PMC8043878.
  52. Neiman PU, Tsai TC, Bergmark RW, Ibrahim A, Nathan H, Scott JW. The Affordable Care Act at 10 Years: Evaluating the Evidence and Navigating an Uncertain Future. J Surg Res. 2021 Jul;263:102-109. doi: 10.1016/j.jss.2020.12.056. Epub 2021 Feb 25. PMID: 33640844.
  53. Mandel W, Oulbacha R, Roy-Beaudry M, Parent S, Kadoury S. Image-Guided Tethering Spine Surgery With Outcome Prediction Using Spatio-Temporal Dynamic Networks. IEEE Trans Med Imaging. 2021 Feb;40(2):491-502. doi: 10.1109/TMI.2020.3030741. Epub 2021 Feb 2. PMID: 33048671.
  54. McDonnell JM, Ahern DP, Ó Doinn T, Gibbons D, Rodrigues KN, Birch N, Butler JS. Surgeon proficiency in robot-assisted spine surgery. Bone Joint J. 2020 May;102-B(5):568-572. doi: 10.1302/0301-620X.102B5.BJJ-2019-1392.R2. PMID: 32349598.
  55. Bisson EF, Rajakumar DV, Mummaneni PV. Introduction. Minimally invasive spine surgery. Neurosurg Focus. 2017 Aug;43(2):E1. doi: 10.3171/2017.5.FOCUS17319. PMID: 28760042.
  56. Liu R, Liu Q, Zhao G, Zhao Z, Li M, Gao Y. Single-port (SP) robotic pancreatic surgery using the da Vinci SP system: A retrospective study on prospectively collected data in a consecutive patient cohort. Int J Surg. 2022 Aug;104:106782. doi: 10.1016/j.ijsu.2022.106782. Epub 2022 Jul 30. PMID: 35918008.
  57. Leal Ghezzi T, Campos Corleta O. 30 Years of Robotic Surgery. World J Surg. 2016 Oct;40(10):2550-7. doi: 10.1007/s00268-016-3543-9. PMID: 27177648.
  58. Laverdière C, Corban J, Khoury J, Ge SM, Schupbach J, Harvey EJ, Reindl R, Martineau PA. Augmented reality in orthopaedics: a systematic review and a window on future possibilities. Bone Joint J. 2019 Dec;101-B(12):1479-1488. doi: 10.1302/0301-620X.101B12.BJJ-2019-0315.R1. PMID: 31786992.
  59. Patel PD, Canseco JA, Houlihan N, Gabay A, Grasso G, Vaccaro AR. Overview of Minimally Invasive Spine Surgery. World Neurosurg. 2020 Oct;142:43-56. doi: 10.1016/j.wneu.2020.06.043. Epub 2020 Jun 13. PMID: 32544619.
  60. Geng Y, Zhu R, Maimaituerxun M. Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environ Sci Pollut Res Int. 2022 Nov;29(51):76668-76686. doi: 10.1007/s11356-022-23283-3. Epub 2022 Sep 28. PMID: 36169840.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search