Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Forage Grass in Static Gas Exchange Chambers Deployed In Southern Amazon Influences Field Measurement of Soil N2O Emissions

Environmental Sciences    Start Submission

Alexandre Ferreira do Nascimento* and Anderson Ferreira

Volume5-Issue1
Dates: Received: 2023-12-10 | Accepted: 2024-01-09 | Published: 2024-01-10
Pages: 016-020

Abstract

Static chambers are used to estimate the exchange of greenhouse gases between the soil and the atmosphere, but the presence of plants inside such chambers can alter gas fluxes. This study aimed to determine the influence of forage grass on N2O fluxes emanating from an oxisol in the southern Amazon region of Brazil. A randomized experiment comprising two treatments, namely static gas exchange Chambers with Grass (CWG) and Chambers with No Grass (CNG) with six replicates of each was performed to determine N2O fluxes over a period of one year. Soil N2O fluxes in the CWG were higher (19.08 µg N2O-N m-2 h-1) than those in the CNG (9.05 µg N2O-N m-2 h-1), most especially during the wet season. Cumulative N2O emissions were 1.60 and 0.72 kg N2O-N ha-1 for the CWG and CNG, respectively. The higher N2O estimates in the CWG may be attributed to the plant transpiration stream and/or to changes in soil attributes induced by the plants. Measurement of N2O emissions from a grass-covered oxisol inside gas exchange chambers may overestimate soil N2O flux in the tropical humid climate of the Southern Amazon.

FullText HTML FullText PDF DOI: 10.37871/jbres1867


Certificate of Publication




Copyright

© 2024 do Nascimento AF, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

do Nascimento AF, Ferreira A. Forage Grass in Static Gas Exchange Chambers Deployed In Southern Amazon Infl uences Field Measurement of Soil N2O Emissions. J Biomed Res Environ Sci. 2024 Jan 10; 5(1): 016-020. doi: 10.37871/jbres1867, Article ID: JBRES1867, Available at: https://www.jelsciences.com/articles/jbres1867.pdf


Subject area(s)

References


  1. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130122. doi: 10.1098/rstb.2013.0122. PMID: 23713120; PMCID: PMC3682742.
  2. Parkin TB, Venterea RT. Chamber-based trace gas flux measurements. In: Follett, R.F. ed. USDA-ARS GRACEnet project protocols: Sampling protocols. USDA-ARS, Fort Collins, CO, USA. 2010;p.1-39.3.
  3. Collier SM, Dean AP, Oates LG, Ruark MD, Jackson RD. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils? J Environ Qual. 2016 Mar;45(2):751-6. doi: 10.2134/jeq2015.07.0377. PMID: 27065424.
  4. Chang C, Janzen HH, Nakonechny EM, Cho CM. Nitrous oxide emission through plants. Soil Science Society of American Journal. 1998;35:35-38. doi: 10.2136/sssaj1998.03615995006200010005x.
  5. Zou J, Huang Y, Sun W, Zheng X. Contribution of plants to N2O emissions in soil-winter wheat ecosystem: pot and field experiments. Plant Soil. 2005;269:205-211. doi: 10.1007/s11104-004-0484-0.
  6. Lenhart K, Behrendt T, Greiner S, Steinkamp J, Well R, Giesemann A, Keppler F. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytol. 2019 Feb;221(3):1398-1408. doi: 10.1111/nph.15455. Epub 2018 Oct 10. PMID: 30303249.
  7. Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry. 2001;33:1915-1925. doi: 10.1016/S0038-0717(01)00117-1.
  8. Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biology and Biochemistry. 2015;80:146-155. doi: 10.1016/j.soilbio.2014.09.023.
  9. Vázquez E, Teutscherova N, Dannenmann M, Töchterle P, Butterbach-Bahl K, Pulleman M, Arango J. Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biology & Biochemistry. 2020;151: 108058. doi: 10.1016/j.soilbio.2020.108058.
  10. Helliwell JR, Sturrock CJ, Mairhofer S, Craigon J, Ashton RW, Miller AJ, Whalley WR, Mooney SJ. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Scientific Reports. 2017;7:1-10. doi: 10.1038/s41598-017-14904-w.
  11. Lucas M, Schlüter S, Vogel HJ, Vetterlein D. Roots compact the surrounding soil depending on the structures they encounter. Scientific Reports. 2019;9:1-13. doi: 10.1038/s41598-019-52665-w.
  12. United States Department of Agriculture. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook, Washington DC, USA; 1999.
  13. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF. Brazilian Soil Classification System. Embrapa, Brasília, DF, Brazil. 2018.
  14. Ferreira DF, Cargnelutti Filho A, Lúcio AD. Procedimentos estatísticos em planejamentos experimentais com restrição na casualização. Boletim Informativo Sociedade Brasileira de Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Campinas, SP, Brazil. 2012;p.16-19.
  15. Nascimento AF, Rodrigues RAR. Sampling frequency to estimate cumulative nitrous oxide emissions from the soil. Pesquisa Agropecuária Brasileira. 2019;54:1-5. doi: 10.1590/S1678-3921.pab2019.v54.00211.
  16. Hutchinson GL, Livingston GP. Use of chamber systems to measure trace gas fluxes. In: Harper LA, Mosier AR, Duxbury JM, Rolston chair ED, editors. Agricultural ecosystem effects on trace gases and global climate change. ASA, CSSA and SSSA, Madison, WI, USA. 1993;p.63-78.
  17. Alexander JR, Venterea RT, Baker JM, Coulter JA. Kura clover living mulch: Spring management effects on nitrogen. Agronomy. 2019;69:1-14. doi: 10.3390/agronomy9020069.
  18. Parkin TB, Kaspar TC. Temporal variability of soil carbon dioxide flux. Soil Science Society of American Journal. 2004;68:1234-1241. doi: 10.2136/sssaj2004.1234.
  19. Alfaro MA, Giltrap D, Topp CFE, Klein CAM. How to report your experimental data. In: Klein CAM, Harvey MJ, editors. Nitrous oxide chamber methodology guidelines - Version 1.1. Global Research Alliance, New Zealand. 2015;p.122-130.
  20. Nascimento AF, Oliveira CM, Pedreira BC, Pereira DH, Rodrigues RRA. Nitrous oxide emissions and forage accumulation in the Brazilian Amazon forage‐livestock systems submitted to N input strategies. Grassland Science. 2021;67: 63-72. doi: 10.1111/grs.12287.
  21. Teramoto S, Takayasu S, Kitomi Y, Arai-Sanoh Y, Tanabata T, Uga Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods. 2020 May 11;16:66. doi: 10.1186/s13007-020-00612-6. PMID: 32426023; PMCID: PMC7216661.
  22. Wang Y, Li X, Dong W, Wu D, Hu C, Zhang Y, Luo Y. Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. Geoderma. 2018;319:100-112. doi: 10.1016/j.geoderma.2018.01.001.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search