Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Comparative Analysis and Definitions of Fractional Derivatives

General Science    Start Submission

Adil Khurshaid* and Hajra Khurshaid

Volume4-Issue12
Dates: Received: 2023-11-30 | Accepted: 2023-12-21 | Published: 2023-12-22
Pages: 1684-1688

Abstract

Fractional Calculus (FC) has emerged as a valuable tool in various fields. This study explores the historical development of (FC) and examines prominent definitions regarding Fractional Derivatives (FD), such as the Riemann-Liouville, Grunwald-Letnikov, Caputo Fractional Derivative, Katugampula derivatives, Caputo Fractional Derivative, Caputo-Fabrizio Fractional Derivative and as well as Atangana-Baleanu Fractional Derivative. It critically evaluates their strengths, weaknesses and implications on (FD) equations. The findings contribute to establishing a clearer understanding of Fractional Derivatives (FD) and guiding their appropriate use in practical scenarios. It investigates the impact of different definitions on the properties and behaviors of (FD), providing valuable insights for researchers.

FullText HTML FullText PDF DOI: 10.37871/jbres1852


Certificate of Publication




Copyright

© 2023 Khurshaid A, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Khurshaid A, Khurshaid H. Comparative Analysis and Defi nitions of Fractional Derivatives. J Biomed Res Environ Sci. 2023 Dec 22; 4(12): 1684-1688. doi: 10.37871/jbres1852, Article ID: JBRES1852, Available at: https://www.jelsciences.com/articles/ jbres1852.pdf


Subject area(s)

References


  1. Mainardi F, Gorenflo R. Fractional calculus and special functions. Phys. Univ. Bologna. 2013;1-64.
  2. Du M, Wang Z, Hu H. Measuring memory with the order of fractional derivative. Scientific Reports. 2013;3(1):1-3.
  3. De Oliveira EC, Tenreiro Machado JA. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering. 2014;1-6.
  4. Dalir M, Bashour M. Applications of fractional calculus. Applied Mathematical Sciences. 2010;4(21):1021-1032.
  5. Hartley TT, Lorenzo CF. Dynamics and control of initialized fractional-order systems. Nonlinear Dynamics. 2002;29:201-233.
  6. You H, Shen Y, Xing H, Yang S. Optimal control and parameters design for the fractional-order vehicle suspension system. Journal of Low Frequency Noise, Vibration and Active Control. 2018;37(3):456-467. doi: 10.1177/0263092317717166.
  7. Mladenov V, Mastorakis N. Advanced topics on applications of fractional calculus on control problems, system stability and modeling. World Scientific and Engineering Academy and Society. 2014;1-12.
  8. Miller KG, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations.1st ed. New York:Wiley; 1993:1-384
  9. Khaliq A, Mujeeb R. Existence of weak solutions for Ψ-Caputo fractional boundary value problem via variational methods. J. Appl. Anal. Comput. 2021;11:768-1778. doi: 10.11948/20200115.
  10. Nazeer N, Asjad MI, Azam MK, Akgül A. Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities. International Journal of Applied and Computational Mathematics. 2022; 8(5):1-16. doi: 10.1007/s40819-022-01426-x.
  11. Moore EJ, Sirisubtawee S, Koonprasert S. A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Advances in Difference Equations. 2019;(1):1-20. doi: 10.1186/s13662-019-2138-9.
  12. Bas E, Ozarslan R. Real world applications of fractional models by Atangana–Baleanu fractional derivative. Chaos, Solitons & Fractals. 2018; 116:121-125. doi: 10.1016/j.chaos.2018.09.019.
  13. Atangana A. Fractional Operators and Their Applications. In Elsevier eBooks. 2018;79–112. doi: 10.1016/B978-0-12-809670-3.00005-9.
  14. Bouzenna FEG, Meftah MT, Difallah M. Application of the Caputo Fabrizio derivative without singular kernel to fractional Schrödinger equations. Pramana. 2020;94(1):1-7. doi: 10.1007/s12043-020-01968-z.
  15. Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos, Solitons & Fractals. 2016; 89:447-454. doi: 10.1016/j.chaos.2016.02.012.
  16. Soltanpour Moghadam A, Arabameri M, Baleanu D, Barfeie M. Numerical solution of variable fractional order advection‐dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. Mathematical Methods in the Applied Sciences. 2020;43(7):3936-3953. doi: 10.1002/mma.6164.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search