Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Recent Trends on the use of Infrared Spectroscopy for Soil Assessment

Environmental Sciences    Start Submission

Angelo Jamil Maia*

Volume4-Issue11
Dates: Received: 2023-11-10 | Accepted: 2023-11-25 | Published: 2023-11-27
Pages: 1618-1623

Abstract

Infrared spectroscopy has emerged as a powerful tool to assess soil properties for both environmental science and agriculture. Here, we explore its recent trends and developments for soil assessment. This technique is an alternative that counters the limitations of traditional laboratory methods, offering a cost-effective and non-destructive approach. Here, the latest trends in the innovation landscape of infrared spectroscopy for soil assessment are explored, providing insights on its broad range of applications and into the future trajectory of this technology. Firstly, we delve into its applications in agriculture, highlighting its potential for prediction of many soil attributes. Next, we explore soil carbon assessment, emphasizing the importance of estimating soil organic carbon and soil carbon stock for soil quality. Soil pollution and elemental contents are addressed, focusing on the prediction of potentially toxic elements concentrations in soil, strongly relevant for environmental monitoring. Infrared spectroscopy emerges as a valuable tool for rapid and non-hazardous elemental content assessment. Soil physical properties prediction, traditionally limited to soil texture analysis, is extended through the application of novel approaches, shedding light on the broader potential of this technology for soil quality assessment. The ongoing developments in statistical modeling and technological innovation are also showcased, mainly focused on machine learning methods. Lastly, the importance of soil spectral libraries is emphasized, such as the Global Soil Spectral Calibration Library and Estimation Service, and Brazilian Soil Spectral Library. In conclusion, infrared spectroscopy has become an important tool in soil assessment, offering a multitude of applications across environmental and agricultural contexts. This review underscores the growing potential of this technology in advancing the standardization and reproducibility of sustainable soil assessment procedures, ensuring a brighter future for soil science.

FullText HTML FullText PDF DOI: 10.37871/jbres1840


Certificate of Publication




Copyright

© 2023 Maia AJ. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Maia AJ. Recent Trends on the use of Infrared Spectroscopy for Soil Assessment. J Biomed Res Environ Sci. 2023 Nov 27; 4(11): 1618-1623. doi: 10.37871/jbres1840, Article ID: JBRES1840, Available at: https://www.jelsciences.com/articles/ jbres1840.pdf


Subject area(s)

References


  1. Mohamed ES, Saleh AM, Belal AB, Gad A. Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Science. 2018;21(1):1-14. doi: 10.1016/j.ejrs.2017.02.001.
  2. Ng W, Minasny B, Jeon SH, Mc Bratney A. Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions. Soil Security. 2022;6:100043. doi: 10.1016/j.soisec.2022.100043.
  3. Ahmadi A, Emami M, Daccache A, He L. Soil properties prediction for precision agriculture using visible and near-infrared spectroscopy: A systematic review and meta-analysis. Agronomy. 2021;11(3):433. doi: 10.3390/agronomy11030433.
  4. Reeves III JB. Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? Geoderma. 2010;158(1-2):3-14. doi: 10.1016/j.geoderma.2009.04.005.
  5. Bellon-Maurel V, McBratney A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–Critical review and research perspectives. Soil Biology and Biochemistry. 2011;43(7):1398-1410. doi:10.1016/j.soilbio.2011.02.019.
  6. Angelopoulou T, Balafoutis A, Zalidis G, Bochtis D. From laboratory to proximal sensing spectroscopy for soil organic carbon estimation-A review. Sustainability. 2020;12(2):443. doi: 10.3390/su12020443.
  7. Shi T, Chen Y, Liu Y, Wu G. Visible and near-infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals. J Hazard Mater. 2014 Jan 30;265:166-76. doi: 10.1016/j.jhazmat.2013.11.059. Epub 2013 Dec 7. PMID: 24361494.
  8. Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, R Pallasser, Pozza L. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma. 2015;241:180-209. doi: 10.1016/j.geoderma.2014.11.024.
  9. Cozzolino D. Near infrared spectroscopy as a tool to monitor contaminants in soil, sediments and water-State of the art, advantages and pitfalls. Trends in Environmental Analytical Chemistry. 2016;9:1-7. doi: 10.1016/j.teac.2015.10.001.
  10. Jia X, O'Connor D, Shi Z, Hou D. VIRS based detection in combination with machine learning for mapping soil pollution. Environ Pollut. 2021 Jan 1;268(Pt A):115845. doi: 10.1016/j.envpol.2020.115845. Epub 2020 Oct 13. PMID: 33120345.
  11. Liu J, Xie J, Han J, Wang H, Sun J, Li R, Li S. Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties. Journal of Soils and Sediments. 2020;20:2749-2760. doi: 10.1007/s11368-020-02623-1.
  12. Wang Y, Chen S, Hong Y, Hu B, Peng J, Shi Z. A comparison of multiple deep learning methods for predicting soil organic carbon in Southern Xinjiang, China. Computers and Electronics in Agriculture. 2023;212:108067. doi: 10.1016/j.compag.2023.108067.
  13. Viscarra Rossel RA, Behrens T, Ben-Dor E, Brown DJ, Demattê JAM, Shepherd KD, Shi Z, Stenberg B, Stevens A, Adamchuk V, Aïchi H, Barthès BG, Bartholomeus HM, Bayer AD, Bernoux M, Böttcher K, Brodský L, Du CW, Chappell A, Fouad Y, Genot V, Gomez C, Grunwald S, Gubler A, Guerrero C, Hedley CB, Knadel , Morrás HJM, Nocita M, Ramirez-Lopez L, Roudier P, Rufasto Campos EM, Sanborn P, Sellitto VM, Sudduth KA, Rawlins BG, Walter C, Winowiecki LA, Hong SY, Ji W. A global spectral library to characterize the world's soil. Earth-Science Reviews.2016;155:198-230. doi: 10.1016/j.earscirev.2016.01.012.
  14. Rodrigues M, Argenta JC, Cezar E, dos Santos GLAA, Özal Ö, Reis AS, Nanni MR. The use of Vis-NIR-SWIR spectroscopy in the prediction of soil available ions after application of rock powder. Information Processing in Agriculture. 2022.
  15. Lelago A, Bibiso M. Performance of mid infrared spectroscopy to predict nutrients for agricultural soils in selected areas of Ethiopia. Heliyon.2022;8(3). doi: 10.1016/j.heliyon.2022.e09050
  16. Sleep B, Mason S, Janik L, Mosley L. Application of visible near-infrared absorbance spectroscopy for the determination of Soil pH and liming requirements for broad-acre agriculture. Precision Agriculture. 2022;23(1):194-218. doi:10.1007/s11119-021-09834-7.
  17. Hume R, Marschner P, Mason S, Schilling RK, Hughes B, Mosley LM. Measurement of lime movement and dissolution in acidic soils using mid-infrared spectroscopy. Soil and Tillage Research. 2023;233:105807. doi:10.1016/j.still.2023.105807.
  18. Garrett LG, Sanderman J, Palmer DJ, Dean F, Patel S, Bridson JH, Carlin T. Mid-infrared spectroscopy for planted forest soil and foliage nutrition predictions, New Zealand case study. Trees, Forests and People.2022;8:100280. doi: 10.1016/j.tfp.2022.100280.
  19. Lotfollahi L, Delavar MA, Biswas A, Fatehi S, Scholten T. Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy. Journal of Environmental Management. 2023;345:118854. doi: 10.1016/j.jenvman.2023.118854.
  20. Ramifehiarivo N, Barthès BG, Cambou A, Chapuis-Lardy L, Chevallier T, Albrecht A, Razafimbelo T. Comparison of near and mid-infrared reflectance spectroscopy for the estimation of soil organic carbon fractions in Madagascar agricultural soils. Geoderma Regional. 2023;33:e00638. doi: 10.1016/j.geodrs.2023.e00638.
  21. Hong Y, Munnaf MA, Guerrero A, Chen S, Liu Y, Shi Z, & Mouazen AM. Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon. Soil and Tillage Research. 2022; 217:105284. doi: 10.1016/j.still.2021.105284.
  22. Liu S, Chen J, Guo L, Wang J, Zhou Z, Luo J, Yang R. Prediction of soil organic carbon in soil profiles based on visible–near-infrared hyperspectral imaging spectroscopy. Soil and Tillage Research. 2023;232:105736. doi: 10.1016/j.still.2023.105736.
  23. Pärnpuu S, Astover A, Tõnutare T, Penu P, Kauer K. Soil organic matter qualification with FTIR spectroscopy under different soil types in Estonia. Geoderma Regional. 2022;28:e00483. doi: 10.1016/j.geodrs.2022.e00483.
  24. Wehrle R, Coulouma G, Pätzold S. Portable mid-infrared spectroscopy to predict parameters related to carbon storage in vineyard soils: Model calibrations under varying geopedological conditions. Biosystems Engineering. 2022;222:1-14. doi: 10.1016/j.biosystemseng.2022.07.012.
  25. Sousa JCGD, Silva YJABD, Martins V, Rodrigues S, Teixeira MPR, Dalto PH, Barbosa RS. Diffuse Reflectance Spectroscopy for Mapping Soil Carbon Stock in the Gilbués Desertification Region at Brazilian Cerrado. Land.2023;12(9):1812. doi: 10.3390/land12091812.
  26. Bai Z, Chen S, Hong Y, Hu B, Luo D, Peng J, Shi Z. Estimation of soil inorganic carbon with visible near-infrared spectroscopy coupling of variable selection and deep learning in arid region of China. Geoderma.2023;437:116589. doi: 10.1016/j.geoderma.2023.116589.
  27. Cambou A, Barthès BG, Moulin P, Chauvin L, Masse D, Chevallier T, Chapuis-Lardy L, Faye E. Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in Sine Saloum (Senegal). Catena.2022;212:106075. doi: 10.1016/j.catena.2022.106075.
  28. Gholizadeh A, Saberioon M, Pouladi N, Ben-Dor E. Quantification and depth distribution analysis of carbon to nitrogen ratio in forest soils using reflectance spectroscopy. International Soil and Water Conservation Research. 2023;11(1):112-124. doi: 10.1016/j.iswcr.2022.06.004.
  29. Krzebietke S, Daszykowski M, Czarnik-Matusewicz H, Stanimirova I, Pieszczek L, Sienkiewicz S, Wierzbowska J. Monitoring the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol soils using near-infrared reflectance spectroscopy and chemometrics. Talanta. 2023;251:123749. doi: 10.1016/j.talanta.2022.123749.
  30. Naibo G, Ramon R, Pesini G, Moura-Bueno JM, Barros CA, Caner L, Tiecher T. Near-infrared spectroscopy to estimate the chemical element concentration in soils and sediments in a rural catchment. Catena.2022;213:106145. doi: 10.1016/j.catena.2022.106145.
  31. Maia AJ, Nascimento RC, da Silva YJAB, do Nascimento CWA, de Sousa Mendes W, Neto JGV, Tiecher T, Araújo J, da Silva YJAB. Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchemical Journal. 2022;179:107544. doi: 10.2139/ssrn.4031424.
  32. Kästner F, Sut-Lohmann M, Ramezany S, Raab T, Feilhauer H, Chabrillat S. Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma. 2022;406:115512. doi: 10.1016/j.geoderma.2021.115512.
  33. Nyarko F, Tack FMG, Mouazen AM. Potential of visible and near infrared spectroscopy coupled with machine learning for predicting soil metal concentrations at the regional scale. Sci Total Environ. 2022 Oct 1;841:156582. doi: 10.1016/j.scitotenv.2022.156582. Epub 2022 Jun 14. PMID: 35714741.
  34. Shi L, O'Rourke S, de Santana FB, Daly K. Prediction of soil bulk density in agricultural soils using mid-infrared spectroscopy. Geoderma. 2023;434:116487. doi: 10.1016/j.geoderma.2023.116487.
  35. Afriyie E, Verdoodt A, Mouazen AM. Potential of visible-near infrared spectroscopy for the determination of three soil aggregate stability indices. Soil and Tillage Research. 2022;215:105218. doi: 10.1016/j.still.2021.105218.
  36. Clergue TC, Saby NP, Wadoux AMC, Barthès BG, Lacoste M. Estimating soil aggregate stability with infrared spectroscopy and pedotransfer functions. Soil Security. 2023;11:100088. doi: 10.1016/j.soisec.2023.100088.
  37. Zhu Z, Minasny B, Field DJ, An S. Using mid-infrared diffuse reflectance spectroscopy to investigate the dynamics of soil aggregate formation in a clay soil. Catena. 2023;231:107366. doi: 10.1016/j.catena.2023.107366.
  38. Munnaf MA, Mouazen AM. Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning. Catena. 2022;211:106015. doi: 10.1016/j.catena.2022.106015.
  39. Hong Y, Chen S, Hu B, Wang N, Xue J, Zhuo Z, Yang Y, Chen Y, Peng J, Liu Y, Mouazen AM, Shi Z. Spectral fusion modeling for soil organic carbon by a parallel input-convolutional neural network. Geoderma. 2023;437:116584. doi: 10.1016/j.geoderma.2023.116584.
  40. Carvalho JK, Moura-Bueno JM, Ramon R, Almeida TF, Naibo G, Martins AP, Lenio SS, Clesio G, Tiecher T. Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in Southern Brazil. Geoderma Regional. 2022;29:e00530. doi: 10.1016/j.geodrs.2022.e00530.
  41. Albinet F, Peng Y, Eguchi T, Smolders E, Dercon G. Prediction of exchangeable potassium in soil through mid-infrared spectroscopy and deep learning: From prediction to explainability. Artificial Intelligence in Agriculture. 2022;6:230-241. doi: 10.1016/j.aiia.2022.10.001.
  42. Wang W, Yang W, Zhou P, Cui Y, Wang D, Li M. Development and performance test of a vehicle-mounted total nitrogen content prediction system based on the fusion of near-infrared spectroscopy and image information. Computers and Electronics in Agriculture. 2022;192:106613. doi: 10.1016/j.compag.2021.106613.
  43. Ebrahimi MKV, Lee H, Won J, Kim S, Park SS. Estimation of soil texture by fusion of near-infrared spectroscopy and image data based on convolutional neural network. Computers and Electronics in Agriculture. 2023;212:108117. doi: 10.1016/j.compag.2023.108117.
  44. Shepherd KD, Ferguson R, Hoover D, van Egmond F, Sanderman J, Ge Y. A global soil spectral calibration library and estimation service. Soil Security. 2022;7:100061. doi: 10.1016/j.soisec.2022.100061.
  45. Mendes WS, Dematte JA, Rosin NA, da Silva Terra F, Poppiel RR, Urbina-Salazar DF, Luiz Boechat C, Benedet da Silva E, Curi N, Godinho Silva SH, Santos UJ, Valladares GS. The Brazilian soil mid-infrared spectral library: the power of the fundamental range. Geoderma. 2022;415:115776. doi: 10.1016/j.geoderma.2022.115776.
  46. Ma Y, Roudier P, Kumar K, Palmada T, Grealish G, Carrick S, Lilburne L, Triantafilis J. A soil spectral library of New Zealand. Geoderma Regional. 2023;e00726. doi: 10.1016/j.geodrs.2023.e00726.
  47. Hong Y, Chen Y, Chen S, Shen R, Hu B, Peng J, Wang N, Guo L, Zhuo Z, Yang Y, Liu Y, Mouazen AM, Shi Z.. Data mining of urban soil spectral library for estimating organic carbon. Geoderma. 2022;426:116102. doi: 10.1016/j.geoderma.2022.116102.
  48. Luce MS, Ziadi N, & Rossel RAV. GLOBAL-LOCAL: A new approach for local predictions of soil organic carbon content using large soil spectral libraries. Geoderma. 2022;425:116048. doi: 10.1016/j.geoderma.2022.116048.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search