Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Regulatory Policies of Genome Editing Products around the World

Environmental Sciences    Start Submission

Ying Wang*, Yong Mu, Liuhua Yan, Bo Tang* and Fukun Jiang*

Volume4-Issue10
Dates: Received: 2023-10-15 | Accepted: 2023-10-20 | Published: 2023-10-23
Pages: 1447-1454

Abstract

Genome editing is one of the powerful tools that has been applied to the improvement of plants, animals and microorganisms, and human therapy. The regulation of genome editing products vary among nations. Here we summarize the legislation of genome editing in different nations to let people know how genome editing products have been regulated in different nations. Additionally, the departments responsible for genome editing regulation in each nation are provided in this review.

FullText HTML FullText PDF DOI: 10.37871/jbres1817


Certificate of Publication




Copyright

© 2023 Wang Y, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Wang Y, Mu Y, Yan L, Tang B, Jiang F. Regulatory Policies of Genome Editing Products around the World. J Biomed Res Environ Sci. 2023 Oct 23; 4(10): 1447-1454. doi: 10.37871/jbres1817, Article ID: JBRES1817, Available at: https://www. jelsciences.com/articles/jbres1817.pdf


Subject area(s)

References


  1. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24. PMID: 24157548; PMCID: PMC3969860.
  2. Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Mol Biotechnol. 2023 Feb;65(2):227-242. doi: 10.1007/s12033-022-00501-4. Epub 2022 Apr 26. PMID: 35474409; PMCID: PMC9041284.
  3. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22. PMID: 26098369; PMCID: PMC4540238.
  4. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28. PMID: 29512652; PMCID: PMC5951633.
  5. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6. PMID: 26735016; PMCID: PMC4851738.
  6. Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol. 2020 Jun 30;8:711. doi: 10.3389/fbioe.2020.00711. PMID: 32695770; PMCID: PMC7338305.
  7. Chen B, Niu Y, Wang H, Wang K, Yang H, Li W. Recent advances in CRISPR research. Protein Cell. 2020 Nov;11(11):786-791. doi: 10.1007/s13238-020-00704-y. PMID: 32200531; PMCID: PMC7647966.
  8. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20. PMID: 27096365; PMCID: PMC4873371.
  9. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Epub 2017 Oct 25. Erratum in: Nature. 2018 May 2;: PMID: 29160308; PMCID: PMC5726555.
  10. Scholefield J, Harrison PT. Prime editing - an update on the field. Gene Ther. 2021 Aug;28(7-8):396-401. doi: 10.1038/s41434-021-00263-9. Epub 2021 May 24. PMID: 34031549; PMCID: PMC8376635.
  11. Huang J, Lin Q, Fei H, He Z, Xu H, Li Y, Qu K, Han P, Gao Q, Li B, Liu G, Zhang L, Hu J, Zhang R, Zuo E, Luo Y, Ran Y, Qiu JL, Zhao KT, Gao C. Discovery of deaminase functions by structure-based protein clustering. Cell. 2023 Jul 20;186(15):3182-3195.e14. doi: 10.1016/j.cell.2023.05.041. Epub 2023 Jun 27. PMID: 37379837.
  12. Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016 Jan 28;6:20070. doi: 10.1038/srep20070. Erratum in: Sci Rep. 2017 Jan 19;7:40272. PMID: 26818188; PMCID: PMC4730182.
  13. Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284. doi: 10.1631/jzus.B2100009. PMID: 33835761; PMCID: PMC8042526.
  14. Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023 Jan 20;379(6629):eadd8643. doi: 10.1126/science.add8643. Epub 2023 Jan 20. PMID: 36656942.
  15. Wells KD, Prather RS. Genome-editing technologies to improve research, reproduction, and production in pigs. Mol Reprod Dev. 2017 Sep;84(9):1012-1017. doi: 10.1002/mrd.22812. Epub 2017 Jun 8. PMID: 28394093; PMCID: PMC5603364.
  16. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016 Jan;34(1):20-2. doi: 10.1038/nbt.3434. Epub 2015 Dec 7. PMID: 26641533.
  17. Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction. 2021 Jun 11;162(1):F59-F68. doi: 10.1530/REP-21-0078. PMID: 34096507; PMCID: PMC8240728.
  18. Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep. 2015 Sep 24;5:14435. doi: 10.1038/srep14435. PMID: 26400270; PMCID: PMC4585837.
  19. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017 Jan 10;7:40176. doi: 10.1038/srep40176. PMID: 28071690; PMCID: PMC5223215.
  20. Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci Rep. 2015 May 21;5:10482. doi: 10.1038/srep10482. PMID: 25994151; PMCID: PMC5386245.
  21. Koloskova E, Ezerskiy V, Ostrenko K. Modifications of the betalactoglobulin gene in bovine and goats for correction of milk composition using CRISPR/Cas9 technology. J Livestock Sci. 2021;2:8-16. doi. 10.33259/JLivestSci.2021.8-16.
  22. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 2016;6(34(5)):479-81. doi: 10.1038/nbt.3560. PMID: 27153274.
  23. Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol. 2020 Apr 7;26(13):1394-1426. doi: 10.3748/wjg.v26.i13.1394. PMID: 32308343; PMCID: PMC7152519.
  24. Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188586. doi: 10.1016/j.bbcan.2021.188586. Epub 2021 Jun 30. PMID: 34216725.
  25. Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng. 2016 Nov;38:293-302. doi: 10.1016/j.ymben.2016.09.006. Epub 2016 Sep 28. PMID: 27693320.
  26. Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 2015 May 12;1:15007. doi: 10.1038/celldisc.2015.7. PMID: 27462408; PMCID: PMC4860831.
  27. OSTP. Modernizing the regulatory system for biotechnology products: Final version of the 2017 update to the coordinated framework for the regulation of biotechnology. 2017.
  28. FDA. Plant and animal biotechnology innovation action plan. 2018.
  29. APHIS. Movement of certain genetically engineered organisms. 2020.
  30. EPA-HQ-OPP-2019-0508-0122, Pesticides: Exemptions of certain plant-incorporated protectants derived from newer technologies. 2023.
  31. FDA. Aquadvantage salmon fact sheet, us food & drug administration. 2013.
  32. FDA. GalSafe® Pigs Environmental Assessment. 2020.
  33. FDA. Decision regarding slick-haired cattle is agency’s first enforcement discretion decision for an Intentional Genomic Alteration in an Animal for Food Use. 2022.
  34. CTNBio. Normative Resolution No. 16, of January 15, 2018 - Sets forth the technical requirements for submitting an inquiry to the CTNBio concerning Precision Breeding Innovation Techniques. 2018.
  35. Rehovot Israel, Cambé Brazil. Evogene and TMG announce collaboration to develop nematode resistant soybean through genome editing. 2018.
  36. Gatica-Arias, Andrés. The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. Plant Cell, Tissue and Organ Culture (PCTOC). 2020;141(2):229-242. doi: 10.1007/s11240-020-01799-1.
  37. Hall SS. Crispr Can speed up nature and change how we grow food. Wired. 2018.
  38. Molteni M. Brazil’s plans for gene-edited cows got scrapped-here’s why. 2020.
  39. Marc Brazeau. Animal gene editing breakthrough: bringing Angus beef raised from US cattle to Brazil. Genetic Literacy Project. 2019.
  40. Pisarev Ivan, Muhammad AN, and Kirill SG. Genetically modified organisms in Russia: state of affairs, politics, and regulation. GMOs and Political Stance. Academic Press. 2023;173-191. doi: 10.1016/B978-0-12-823903-2.00015-9.
  41. Government of the Russian Federation. On the Approval of the Federal Research Programme for Genetic Technologies Development for 2019_2027 (Publication in Russian). 2019.
  42. Defra (Department for Environment for Environment Food & Rural Affairs). Game-changing genetic technology bill passes into law in England. John Innes Centre. 2023.
  43. Richard Halleron. First genetically edited crops sown under new UK regulations. 2022.
  44. Missy Green, UK institute trials genome-edited wheat to reduce carcinogenic acrylamide levels in bread. 2021.
  45. Tripathi L, Valentine ON, Jaindra NT. Application of genetic modification and genome editing for developing climate‐smart banana. Food and Energy Security. 2019;8.4:e00168.  doi: 10.1002/fes3.168.
  46. Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C. An overview of regulatory approaches to genome editing in agriculture. Biotechnology Research and Innovation. 2019;3(2):208-220. doi:10.1016/j.biori.2019.07.001.
  47. Waltz E. GABA-enriched tomato is first CRISPR-edited food to enter market. Nat Biotechnol. 2022 Jan;40(1):9-11. doi: 10.1038/d41587-021-00026-2. PMID: 34907351.
  48. Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K, Hayashi T, Sato K. Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat. Cell Rep. 2019 Jul 30;28(5):1362-1369.e4. doi: 10.1016/j.celrep.2019.06.090. PMID: 31365876.
  49. Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep. 2017 Mar 30;7(1):507. doi: 10.1038/s41598-017-00501-4. Erratum in: Sci Rep. 2020 Oct 2;10(1):16776. PMID: 28360425; PMCID: PMC5428692.
  50. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Sci Rep. 2016 Aug 17;6:31481. doi: 10.1038/srep31481. PMID: 27530958; PMCID: PMC4987624.
  51. Kishimoto Kenta, Washio Y, Yoshiura Y, Toyoda A, Ueno T, Fukuyama H, Kato K, Kinoshita M. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture. 2018;495:415-427. doi: 10.1016/j.aquaculture.2018.05.055.
  52. Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Kimura K, Hosoe M. Correction of a disease mutation using crispr/cas9-assisted genome editing in Japanese black cattle. Sci Rep. 2017 Dec 19;7(1):17827. doi: 10.1038/s41598-017-17968-w. Erratum in: Sci Rep. 2018 Jan 19;8(1):1470. PMID: 29259316; PMCID: PMC5736618.
  53. Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016 Jan;83(1):61-70. doi: 10.1002/mrd.22591. Epub 2015 Nov 9. PMID: 26488621.
  54. Royal Society Te Aparangi. Gene editing legal and regulatory implications. 2019.
  55. Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep. 2018 May 16;8(1):7661. doi: 10.1038/s41598-018-25654-8. PMID: 29769555; PMCID: PMC5955954.
  56. Regalado, Antonio. First gene drive in mammals could aid vast New Zealand eradication plan. MIT Technology Review. 2017.
  57. Rogers MJ, Lawson A, Ho C, Kelly K, Wales W, Jacobs J. The changing role of perennial ryegrass in dairy pastures in northern Victoria, Australia. Grass and Forage Science. 2022;77(2):131-140.  doi: 10.1111/gfs.12573.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search