Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Regulation of AMP-Activated Protein Kinase (AMPK) Subunit Expression at the Transcriptional Level by the Neutral Amino Acid Transporter SNAT2

Biology Group    Start Submission

Kun Tae, Sang Woo Cho, Ho Yeon Lee, Hyo Sun Cha and Cheol Yong Choi*

Volume4-Issue9
Dates: Received: 2023-09-13 | Accepted: 2023-09-17 | Published: 2023-09-18
Pages: 1314-1322

Abstract

AMP-Activated Protein Kinase (AMPK) is a key enzyme that maintains cellular energy homeostasis. AMPK promotes catabolic pathways and inhibits anabolic pathways under low-energy conditions, such as glucose deprivation. SLC38A2/SNAT2 is an amino acid transporter that imports a wide range of neutral amino acids, including glutamine and alanine. The expression of SNAT2 is down regulated in patients with metabolic diseases such as obesity, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Here, we demonstrate that SNAT2 is required for LKB1-mediated activation of AMPK. Depletion of SNAT2 results in diminished activation of AMPK under conditions of glucose or serum starvation, while the induction of SNAT2 expression augments AMPK activation. SNAT2 overexpression-mediated induction of AMPK activation is abrogated by LKB1 depletion but not by CaMKK2 or TAK1 depletion. Interestingly, the mRNA levels of AMPKβ2 are comparably reduced by SNAT2 depletion, indicating regulation of AMPKβ2 at the transcriptional level. AMPKβ1 mRNA levels are also reduced to a lesser extent. Consistently, SNAT2 depletion leads to a marked reduction in AMPK-mediated autophagy induction, as evidenced by reduced conversion to LC3 II and LC3 puncta formation under nutrient-deprived conditions. Given that AMPK activation plays a pivotal role in nutrient sensing and the subsequent cellular response to low-energy levels and various stress conditions, we provide another level of regulatory mechanism for AMPK-mediated cellular energy homeostasis.

FullText HTML FullText PDF DOI: 10.37871/jbres1800


Certificate of Publication




Copyright

© 2023 Tae K, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tae K, Cho SW, Lee HY, Cha HS, Choi CY. Regulation of AMP-Activated Protein Kinase (AMPK) Subunit Expression at the Transcriptional Level by the Neutral Amino Acid Transporter SNAT2. J Biomed Res Environ Sci. 2023 Sep 18; 4(9): 1314-1322. doi: 10.37871/jbres1800, Article ID: JBRES1800, Available at: https://www.jelsciences.com/articles/jbres1800.pdf


Subject area(s)

References


  1. Keesey RE, Powley TL. Body energy homeostasis. Appetite. 2008;519(3):442-5. Epub 20080703. doi: 10.1016/j.appet.2008.06.009. PubMed PMID: 18647629; PubMed Central PMCID: PMC2605663.
  2. Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism. 2019;92:11-25. Epub 20181127. doi: 10.1016/j.metabol.2018.11.012. PubMed PMID: 30500561.
  3. Garcia D, Shaw RJ. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell. 2017;66(6):789-800. doi: 10.1016/j.molcel.2017.05.032. PubMed PMID: 28622524; PubMed Central PMCID: PMC5553560.
  4. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15-25. doi: 10.1016/j.cmet.2004.12.003. PubMed PMID: 16054041.
  5. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121-35. Epub 20171004. doi: 10.1038/nrm.2017.95. PubMed PMID: 28974774; PubMed Central PMCID: PMC5780224.
  6. Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and time. Mol Cell. 2021;81(18):3677-90. doi: 10.1016/j.molcel.2021.08.015. PubMed PMID: 34547233; PubMed Central PMCID: PMC8549486.
  7. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19(12):1649-54. Epub 20131103. doi: 10.1038/nm.3372. PubMed PMID: 24185692; PubMed Central PMCID: PMC4965268.
  8. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. doi: 10.1152/physrev.00038.2012. PubMed PMID: 23899560.
  9. Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol. 2023;13:1188371. Epub 20230512. doi: 10.3389/fonc.2023.1188371. PubMed PMID: 37251941; PubMed Central PMCID: PMC10213421.
  10. Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196(1):65-80. Epub 20090219. doi: 10.1111/j.1748-1716.2009.01972.x. PubMed PMID: 19245654; PubMed Central PMCID: PMC2760308.
  11. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-26. doi: 10.1016/j.molcel.2008.03.003. PubMed PMID: 18439900; PubMed Central PMCID: PMC2674027.
  12. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8(1):548. Epub 20170915. doi: 10.1038/s41467-017-00520-9. PubMed PMID: 28916822; PubMed Central PMCID: PMC5601463.
  13. Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy. 2016;12(9):1447-59. Epub 20160615. doi: 10.1080/15548627.2016.1185576. PubMed PMID: 27304906; PubMed Central PMCID: PMC5082788.
  14. Bröer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 2014;466(1):155-72. Epub 20131106. doi: 10.1007/s00424-013-1393-y. PubMed PMID: 24193407.
  15. Menchini RJ, Chaudhry FA. Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology. 2019;161:107789. Epub 20190928. doi: 10.1016/j.neuropharm.2019.107789. PubMed PMID: 31574264.
  16. Bevilacqua E, Bussolati O, Dall'Asta V, Gaccioli F, Sala R, Gazzola GC, et al. SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress. FEBS Lett. 2005;579(16):3376-80. doi: 10.1016/j.febslet.2005.05.002. PubMed PMID: 15922329.
  17. Franchi-Gazzola R, Dall'Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, et al. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol (Oxf). 2006;187(1-2):273-83. doi: 10.1111/j.1748-1716.2006.01552.x. PubMed PMID: 16734764.
  18. Morotti M, Bridges E, Valli A, Choudhry H, Sheldon H, Wigfield S, et al. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer. Proc Natl Acad Sci U S A. 2019;116(25):12452-61. Epub 20190531. doi: 10.1073/pnas.1818521116. PubMed PMID: 31152137; PubMed Central PMCID: PMC6589752.
  19. Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, et al. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem. 2006;281(26):17929-40. Epub 20060418. doi: 10.1074/jbc.M600341200. PubMed PMID: 16621798.
  20. Velázquez-Villegas L, Noriega LG, López-Barradas AM, Tobon-Cornejo S, Méndez-García AL, Tovar AR, et al. ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet. Am J Physiol Endocrinol Metab. 2021;320(1):E102-e12. Epub 20201123. doi: 10.1152/ajpendo.00326.2020. PubMed PMID: 33225719.
  21. Oh RS, Pan WC, Yalcin A, Zhang H, Guilarte TR, Hotamisligil GS, et al. Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem. 2012;287(8):6025-34. Epub 20120103. doi: 10.1074/jbc.M111.311217. PubMed PMID: 22215663; PubMed Central PMCID: PMC3285369.
  22. Gjymishka A, Palii SS, Shan J, Kilberg MS. Despite increased ATF4 binding at the C/EBP-ATF composite site following activation of the unfolded protein response, system A transporter 2 (SNAT2) transcription activity is repressed in HepG2 cells. J Biol Chem. 2008;283(41):27736-47. Epub 20080812. doi: 10.1074/jbc.M803781200. PubMed PMID: 18697751; PubMed Central PMCID: PMC2562058.
  23. Krokowski D, Jobava R, Guan BJ, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290(29):17822-37. Epub 20150603. doi: 10.1074/jbc.M114.636217. PubMed PMID: 26041779; PubMed Central PMCID: PMC4505033.
  24. Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, et al. Stress-induced perturbations in intracellular amino acids reprogram mRNA translation in osmoadaptation independently of the ISR. Cell Rep. 2022;40(3):111092. doi: 10.1016/j.celrep.2022.111092. PubMed PMID: 35858571; PubMed Central PMCID: PMC9491157.
  25. Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS. SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci (Elite Ed). 2011;3(4):1289-99. Epub 20110601. doi: 10.2741/e332. PubMed PMID: 21622135.
  26. Uno K, Yamada T, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, et al. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nat Commun. 2015;6:7940. Epub 20150813. doi: 10.1038/ncomms8940. PubMed PMID: 26268630; PubMed Central PMCID: PMC4557134.
  27. Yi Y, Chen D, Ao J, Zhang W, Yi J, Ren X, et al. Transcriptional suppression of AMPKα1 promotes breast cancer metastasis upon oncogene activation. Proc Natl Acad Sci U S A. 2020;117(14):8013-21. Epub 20200319. doi: 10.1073/pnas.1914786117. PubMed PMID: 32193335; PubMed Central PMCID: PMC7148563.
  28. Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J, et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. Embo j. 2008;27(11):1537-48. Epub 20080515. doi: 10.1038/emboj.2008.92. PubMed PMID: 18480843; PubMed Central PMCID: PMC2426729.
  29. Lin SC, Hardie DG. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab. 2018;27(2):299-313. Epub 20171116. doi: 10.1016/j.cmet.2017.10.009. PubMed PMID: 29153408.
  30. Day EA, Ford RJ, Steinberg GR. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol Metab. 2017;28(8):545-60. Epub 20170621. doi: 10.1016/j.tem.2017.05.004. PubMed PMID: 28647324.
  31. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496-505. doi: 10.2337/diabetes.55.02.06.db05-1064. PubMed PMID: 16443786.
  32. Nasri H, Rafieian-Kopaei M. Metformin: Current knowledge. J Res Med Sci. 2014;19(7):658-64. PubMed PMID: 25364368; PubMed Central PMCID: PMC4214027.
  33. Yuan M, Yan R, Zhang Y, Qiu Y, Jiang Z, Liu H, et al. CARS senses cysteine deprivation to activate AMPK for cell survival. Embo j. 2021;40(21):e108028. Epub 20210902. doi: 10.15252/embj.2021108028. PubMed PMID: 34472622; PubMed Central PMCID: PMC8561634.
  34. Deng L, Yao P, Li L, Ji F, Zhao S, Xu C, et al. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat Commun. 2020;11(1):1755. Epub 20200409. doi: 10.1038/s41467-020-15573-6. PubMed PMID: 32273511; PubMed Central PMCID: PMC7145870.
  35. Bodineau C, Tomé M, Courtois S, Costa ASH, Sciacovelli M, Rousseau B, et al. Two parallel pathways connect glutamine metabolism and mTORC1 activity to regulate glutamoptosis. Nat Commun. 2021;12(1):4814. Epub 20210810. doi: 10.1038/s41467-021-25079-4. PubMed PMID: 34376668; PubMed Central PMCID: PMC8355106.
  36. Adachi Y, De Sousa-Coelho AL, Harata I, Aoun C, Weimer S, Shi X, et al. l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Mol Metab. 2018;17:61-70. Epub 20180811. doi: 10.1016/j.molmet.2018.08.002. PubMed PMID: 30190193; PubMed Central PMCID: PMC6197624.
  37. Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol. 2020;8:671. Epub 20200729. doi: 10.3389/fcell.2020.00671. PubMed PMID: 32903688; PubMed Central PMCID: PMC7438746.
  38. Winther-Sørensen M, Galsgaard KD, Santos A, Trammell SAJ, Sulek K, Kuhre RE, et al. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol Metab. 2020;42:101080. Epub 20200913. doi: 10.1016/j.molmet.2020.101080. PubMed PMID: 32937194; PubMed Central PMCID: PMC7560169.
  39. Eriksen PL, Vilstrup H, Rigbolt K, Suppli MP, Sørensen M, Heebøll S, et al. Non-alcoholic fatty liver disease alters expression of genes governing hepatic nitrogen conversion. Liver Int. 2019;39(11):2094-101. Epub 20190905. doi: 10.1111/liv.14205. PubMed PMID: 31386258.
  40. Morotti M, Zois CE, El-Ansari R, Craze ML, Rakha EA, Fan SJ, et al. Increased expression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer. Br J Cancer. 2021;124(2):494-505. Epub 20201008. doi: 10.1038/s41416-020-01113-y. PubMed PMID: 33028955; PubMed Central PMCID: PMC7852531.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search