Covid-19 Research

Short Communication

OCLC Number/Unique Identifier:

Strategy for Climate Crisis: Introducing Innovative System for CO2 Fixation and Storage

Environmental Sciences    Start Submission

Kenji Sorimachi*, Toshinori Tsukada, Wataru Kobayashi and Hossam Gabbar

Volume4-Issue6
Dates: Received: 2023-06-20 | Accepted: 2023-06-29 | Published: 2023-06-30
Pages: 1108-1112

Abstract

The so-called Paris Agreement was reached at the United Nations Climate Change Conference (COP20) in 2015. This agreement was based on the requirement to keep the increase in the mean global temperature below 2°C relative to the temperature prior to the industrial revolution, and preferably less than 1.5°C. At present, this goal is challenging based solely on the development of carbon-neutral energy systems. The concept of the carbon-neutral society by 2050 seems to be far too late. Herein, we propose an innovative system based on simple chemical reactions using NaOH and CaCl2 via the electrolysis of NaCl or seawater. The generated H2 from the electrolysis of NaCl can be used as a clean energy source for fuel batteries, supplying electricity for the operation of the system. When other renewable energy sources power the system, H2 can be generated as a clean energy alternative. Furthermore, this system produces stable and harmless CaCO3 as a final product, along with NaCl, which can be reused as an electrolysis starting material. The proposed system provides a safe and inexpensive approach for simultaneous CO2 fixation and storage.

FullText HTML FullText PDF DOI: 10.37871/jbres1774


Certificate of Publication




Copyright

© 2023 Sorimachi K, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Sorimachi K, Tsukada T, Kobayashi W, Gabbar H. Strategy for Climate Crisis: Introducing Innovative System for CO2 Fixation and Storage. 2023 June 30; 4(6): 1108-1112. doi: 10.37871/jbres1774, Article ID: JBRES1774, Available at: https://www. jelsciences.com/articles/jbres1774.pdf


Subject area(s)

References


  1. Allan RP, et al. Climate change 2021. The physical science basis, Intergovernmental panel on climate change (IPCC). 2021;1-41.
  2. Rockström J, Steffen W, Noone K, Persson A, Chapin FS 3rd, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. A safe operating space for humanity. Nature. 2009 Sep 24;461(7263):472-5. doi: 10.1038/461472a. PMID: 19779433.
  3. Sorimachi K. Epoch-making discovery for CO2 characteristics: “Pseudo osmosis” in the gas phase. Sci J Health Sci Res. 2022;1(1):49-57.
  4. Sorimachi K. Study on ultimate human evolution: Cooperation of cerebral and five-fingernail development. New Visions in Biological Science. 2021;3:50-64. doi: 10.9734/bpi/nvbs/v3/12202D.
  5. Sorimachi K. Human and earth evolution through CO2: Perspective for climate crisis. J Biomed Res. 2022;3(1):11-17.
  6. Lv B, Guo B, Zhou Z, Jing G. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ Sci Technol. 2015;49:10728-35.
  7. Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2(9):796-854. doi: 10.1002/cssc.200900036. PMID: 19731282.
  8. Jones CW. CO(2) capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng. 2011;2:31-52. doi: 10.1146/annurev-chembioeng-061010-114252. PMID: 22432609.
  9. Nandi M, et al. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun. 2012;48:10283-10285.
  10. Hajra S, Biswas A. Efficient chemical fixation and defixation cycle of carbon dioxide under ambient conditions. Sci Rep. 2022;10:15825.
  11. Hiraide S. et al. High-throughput gas separation by flexible metal-organic framework with fast gating and thermal management capabilities. Nat Commun. 2020;11:3867.
  12. Modak A, Nandi M, Mondal J. Bhaumik A. Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun. 2021;48:248-250.
  13. Qiao Z, Zhao S, Wang J, Wang S, Wang Z, Guiver MD. A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation. Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9321-5. doi: 10.1002/anie.201603211. Epub 2016 Jun 17. PMID: 27312314.
  14. Takeda B, Yamaguchi B. Gas penetrability of polymer membranes. (In Japanese). J Ind Chem. 1959;62(12):1897-1904.
  15. Kenbishi H. Gas penetrability of gum. J Japan Gum Assoc. (In Japanese) 1980;53 (12):719-727.
  16. Pulyalina A, Polotskaya G, Rostovtseva V, Pientka Z, Toikka A. Improved Hydrogen Separation Using Hybrid Membrane Composed of Nanodiamonds and P84 Copolyimide. Polymers (Basel). 2018 Jul 27;10(8):828. doi: 10.3390/polym10080828. PMID: 30960753; PMCID: PMC6404051.
  17. Elhenawy S, Khraisheh M, AlMomani F, Hassan M. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO2, CH4, N2, H2 or Mixtures of These Gases from Various Gas Streams. Molecules. 2020 Sep 18;25(18):4274. doi: 10.3390/molecules25184274. PMID: 32961921; PMCID: PMC7570638.
  18. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017 Jun 16;356(6343):eaab0530. doi: 10.1126/science.aab0530. PMID: 28619885.
  19. Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013-a review. ACS Appl Mater Interfaces. 2015 Feb 4;7(4):2137-48. doi: 10.1021/am507465f. Epub 2015 Jan 21. PMID: 25607244.
  20. Sorimachi K, Gabbar H. Sustainable system for CO2 capturing with multiple products. Petro Chem Indus Intern. 2023;6(3):182-192.
  21. Sorimachi K. Innovative method for CO2 fixation and storage. Sci Rep. 2022 Feb 1;12(1):1694. doi: 10.1038/s41598-022-05151-9. PMID: 35105896; PMCID: PMC8807835.
  22. Sorimachi K. Novel method for CO2 fixation and storage preventing climate crisis: an “artificial forest” model. Petro Chem Indus Intern. 2022;5(1):1-4.
  23. Sorimachi K. Pilot plant model for sequential CO2 fixation and storage. Adv Environ Stu. 2022;6(1):479-483. doi: 10.36959/742/241.
  24. Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro JLG, Navarro RM. Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis. Materials (Basel). 2019 Nov 26;12(23):3902. doi: 10.3390/ma12233902. PMID: 31779127; PMCID: PMC6926878.
  25. Eccles J, Pratson LF, Chandel MK. Effects of well spacing on geological storage site distribution costs and surface footprint. Environ Sci Technol. 2012 Apr 17;46(8):4649-56. doi: 10.1021/es203553e. Epub 2012 Apr 2. PMID: 22433004.
  26. Carroll SA, Iyer J, Walsh SDC. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs. Acc Chem Res. 2017 Aug 15;50(8):1829-1837. doi: 10.1021/acs.accounts.7b00094. Epub 2017 Jul 25. PMID: 28741360.
  27. Sorimachi K. Direct evidence for glucose consumption acceleration by carbonates in cultured cells. Int J Pharma Phytopharm Res. 2019;9(3):1-5.
  28. Sorimachi K. Direct evidence for intracellular homeostasis in mammalian cells: Insulin-independent glucose metabolisms. Ann Res Rev Biol. 2022;37(3):10-19. doi: 10.9734/ARRB/2022/v37i330493.
  29. Sorimachi K. Amines mimic insulin in vito and in vivo: Acceleration of cellular glucose consumption. New Advances in Medicine and Medical Sciences. 2023;2:47-63. doi: 10.9734/bpi/namms/v2/19254D.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search