Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Mushrooms and Lichens the Factory of Important Secondary Metabolites: Review

Biology Group    Start Submission

Waill A Elkhateeb*, Dina E El-Ghwas and Daba GM

Volume4-Issue6
Dates: Received: 2023-06-17 | Accepted: 2023-06-22 | Published: 2023-06-24
Pages: 1072-1082

Abstract

Mushrooms and lichens are plentiful source of nutritional and medicinal compounds. However, medicinal uses of the mushrooms and lichens still need to be worked out for their biological activities. Mushrooms and Lichens have reserved their position centuries ago as food and medicine. They are rich in nutrients and in biologically active compounds that belong to different chemical classes. Capabilities of different members of mushrooms and Lichens have encouraged researchers to investigate further applications of these macrofungi and lichens in fields of food and pharmaceutical industries and also other than food and pharmaceutical industries. This review, aims to put together Lentinan, schizophyllan, Betulinans A and B, ganoderic acid, cordycepin and usnic acid under light spot through representing their importance as biological activities exerted by ever one. Further studies and investigations are fortified in order to find more about these interesting natural products.

FullText HTML FullText PDF DOI: 10.37871/jbres1770


Certificate of Publication




Copyright

: © 2023 Elkhateeb WA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Elkhateeb WA, El-Ghwas DE, Daba GM. Mushrooms and Lichens the Factory of Important Secondary Metabolites: Review. 2023 June 24; 4(6): 1072-1082. doi: 10.37871/jbres1770, Article ID: JBRES1770, Available at: https://www.jelsciences.com/ articles/jbres1770.pdf


Subject area(s)

References


  1. Elkhateeb WA, Daba GM, Thomas PW, Wen TC. Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egypt Pharmaceu J. 2019;18(2):88-101. doi: 10.4103/epj.epj_17_19.
  2. Elkhateeb WA, Daba GM, Elnahas M, Thomas P, Emam M. Metabolic profile and skin-related bioactivities of Cerioporus squamosus hydromethanolic extract. Biodiversitas J Biological Div. 2020;21(10).‏ doi: 10.13057/biodiv/d211037.
  3. Elkhateeb WA, Daba, G. The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi Journal of Natural Product Biochemistry. 2020;18(2):70-77. doi: 10.13057/biofar/f180204.
  4. Elkhateeb WA, Daba GM. Termitomyces marvel medicinal mushroom having a unique life cycle. Open Access Journal of Pharmaceutical Research. 2020;4(1):1-4. doi: 10.23880/oajpr-16000196.
  5. Daba GM, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, Wen TC. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas Journal of Biological Diversity. 2020;21(6):1-10. doi: 10.13057/biodiv/d210615.
  6. Elkhateeb WA. What medicinal mushroom can do? Chem Res J. 2020;5(1):106-118.‏
  7. Elkhateeb WA, Daba GM, Elmahdy EM, Thomas PW, Wen TC, Mohamed N. Antiviral potential of mushrooms in the light of their biological active compounds. ARC J Pharmac Sci. 2019;5:8-12.‏‏ doi: 10.20431/2455-1538.0502003.
  8. El-Hagrassi A, Daba G, Elkhateeb W, Ahmed E, El-Dein AN, Fayad W, Shaheen M, Shehata R, El-Manawaty M, Wen T. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malays J Microbiol. 2020;16(1):40-48. doi: 10.21161/mjm.190346.
  9. Elkhateeb WA, Daba GM, El-Dein AN, Sheir DH, Fayad W, Shaheen MN, Wen TC. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom, Ganoderma applanatum. Egyptian Pharmaceutical Journal. 2020;19(1):67. doi: 10.4103/epj.epj_56_19.
  10. Elkhateeb WA, Zaghlol GM, El-Garawani IM, Ahmed EF, Rateb ME, Abdel Moneim AE. Ganoderma applanatum secondary metabolites induced apoptosis through different pathways: In vivo and in vitro anticancer studies. Biomed Pharmacother. 2018 May;101:264-277. doi: 10.1016/j.biopha.2018.02.058. Epub 2018 Feb 27. PMID: 29494964.
  11. Elkhateeb WA, Elnahas MO, Thomas PW, Daba GM. To heal or not to heal? Medicinal mushrooms wound healing capacities. ARC Journal of Pharmaceutical Sciences. 2019;5(4):28-35. doi: 10.20431/2455-1538.0504004.
  12. Elkhateeb WA, Daba GM, Elnahas MO, Thomas PW. Anticoagulant capacities of some medicinal mushrooms. ARC J Pharma Sci. 2019;5:12-16.‏ doi: 10.20431/2455-1538.0504001.
  13. Elkhateeb W, Elnahas MO, Paul W, Daba GM. Fomes fomentarius and Polyporus squamosus models of marvel medicinal mushrooms. Biomed Res Rev. 2020;3:119. doi: 10.31021/brr.20203119.
  14. Elkhateeb WA, Daba GM. Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella. Journal of Pharmaceutics and Pharmacology Research. 2021;4(3):1-6. doi: 10.31579/2693-7247/029.
  15. Elkhateeb WA, Daba GM. The fascinating bird’s nest mushroom, secondary metabolites and biological activities. International Journal of Pharma Research and Health Sciences, 2021;9(1):3265-3269. doi: 10.21276/ijprhs.2021.01.01.
  16. Elkhateeb WA, Daba GM, Gaziea SM. The anti-nemic potential of mushroom against plant-parasitic nematodes. Open Access Journal of Microbiology & Biotechnology. 2021;6(1):1-6. doi: 10.23880/oajmb-16000186.
  17. Elkhateeb WA, Elnahas MO, Thomas PW, Daba GM. Trametes Versicolor and Dictyophora Indusiata Champions of Medicinal Mushrooms. Open Access Journal of Pharmaceutical Research. 2020;4(1):1-7. doi: 10.23880/oajpr-16000192.
  18. 18. Elkhateeb WA, Daba G. The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi Journal of Natural Product Biochemistry. 2020;18(2):1-10. doi: 10.13057/biofar/f180204.
  19. Daba GM, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, Wen TC. (2020). Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas Journal of Biological Diversity. 2020;21(6):1-10. doi: 10.13057/biodiv/d210615.
  20. Thomas PW, Elkhateeb WA, Daba GM. Chaga (Inonotus obliquus): A medical marvel but a conservation dilemma? Sydowia. 2020;72:123-130. doi: 10.12905/0380.sydowia72-2020-0123.
  21. Thomas P, Elkhateeb WA, Daba GM. Industrial applications of truffles and truffle-like fungi. In: Advances in Macrofungi. CRC Press; 2021. p.82-88. doi: 10.1201/9781003096818-8.
  22. Elkhateeb W, Thomas P, Elnahas M, Daba G. Hypogeous and epigeous mushrooms in human health. In: Advances in Macrofungi. CRC Press; 2021. p.7-19. doi: 10.1201/9781003191278-2.
  23. Elkhateeb W, Elnahas M, Daba G. Infrequent current and potential applications of mushrooms. CRC Press; 2021. p.70-81. doi: 10.1201/9781003096818-7.
  24. Elkhateeb WA, El Ghwas DE, Gundoju NR, Somasekhar T, Akram M, Daba GM. Chicken of the woods Laetiporus sulphureus and Schizophyllum commune treasure of medicinal mushrooms. Open Access Journal of Microbiology & Biotechnology. 2021;6(3):1-7. doi: 10.23880/oajmb-16000201.
  25. Elkhateeb WA, Daba GM. Highlights on unique orange pore cap mushroom favolaschia sp. and beech orange mushroom Cyttaria sp. and their biological activities. Open Access Journal of Pharmaceutical Research. 2021;5(3):1-6. doi: 10.23880/oajpr-16000246.
  26. Elkhateeb WA, Daba GM. Highlights on the wood blue-leg mushroom Clitocybe nuda and blue-milk mushroom Lactarius indigo ecology and biological activities. Open Access Journal of Pharmaceutical Research. 2021;5(3):1-6. doi: 10.23880/oajpr-16000249.
  27. Elkhateeb WA, Daba GM. Highlights on the golden mushroom Cantharellus cibarius and unique shaggy ink cap mushroom Coprinus comatus and smoky bracket mushroom Bjerkandera adusta ecology and biological activities. Open Access Journal of Mycology & Mycological Sciences. 2021;4(2):1-8. doi: 10.23880/oajmms-16000143.
  28. Thomas PW, Elkhateeb WA, Daba G. Truffle and truffle-like fungi from continental Africa. Acta Mycological. 2019;54(2):1-15.
  29. ALKolaibe AG, Elkhateeb WA, Elnahas MO, El-Manawaty M, Deng CY, Wen, TC, Daba GM. Wound healing, anti-pancreatic cancer, and α-amylase inhibitory potentials of the edible mushroom, Metacordyceps neogunnii. Research Journal of Pharmacy and Technology. 2021;14(10):5249-5253. doi: 10.52711/0974-360X.2021.00914.
  30. Elkhateeb WA, Daba GM. The coral mushrooms Ramaria and Clavaria. Studies in Fungi. 2021;6(1):495-506. doi: 10.5943/sif/6/1/39.
  31. Elkhateeb WA, Daba GM. Medicinal mushroom: What should we know? International Journal of Pharmaceutical Chemistry and Analysis. 2021;9(1):1-19.
  32. Elkhateeb WA, Daba GM. The wild non edible mushrooms, what should we know so far? International Journal of Advanced Biochemistry Research. 2022;6(1):43-50. doi: 10.33545/26174693.2022.v6.i1a.83.
  33. Elkhateeb WA and Daba GM. Bioactive potential of some fascinating edible mushrooms Flammulina, lyophyllum, Agaricus, Boletus, Letinula, and Pleurotus as a treasure of multipurpose therapeutic natural product. Pharm Res. 2022;6(1):1-10. doi: 10.23880/oajpr-16000263.
  34. Ahmed E, Elkhateeb W, Taie H, Rateb M, Fayad W. Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. Journal of Applied Pharmaceutical Science. 2017;7(01):098-103. doi: 10.7324/JAPS.2017.70113.
  35. Elkhateeb WA, Daba, GM. Lichens, an alternative drugs for modern diseases. International Journal of Research in Pharmacy and Biosciences. 2019;6(10):5-9.
  36. El-Garawani IM, Elkhateeb WA, Zaghlol GM, Almeer RS, Ahmed EF, Rateb ME, Abdel Moneim AE. Candelariella vitellina extract triggers in vitro and in vivo cell death through induction of apoptosis: A novel anticancer agent. Food Chem Toxicol. 2019 May;127:110-119. doi: 10.1016/j.fct.2019.03.003. Epub 2019 Mar 7. PMID: 30853555.
  37. El-Garawani I, Emam M, Elkhateeb W, El-Seedi H, Khalifa S, Oshiba S, Abou-Ghanima S, Daba G. In Vitro Antigenotoxic, Antihelminthic and Antioxidant Potentials Based on the Extracted Metabolites from Lichen, Candelariella vitellina. Pharmaceutics. 2020 May 24;12(5):477. doi: 10.3390/pharmaceutics12050477. PMID: 32456266; PMCID: PMC7285106.
  38. Elkhateeb WA, Daba, GM. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses. Egyptian Pharmaceutical Journal. 2020;19(3):216.
  39. Elkhateeb WA, Daba, GM, El-Dein AN, Sheir DH, Fayad W, Shaheen MN, Wen TC. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom, Ganoderma applanatum. Egyptian Pharmaceutical Journal. 2020;19(1):67.
  40. Elkhateeb WA, Daba GM, Sheir D, Hapuarachchi KK, Thomas PW. Mysterious world of lichens: Highlights on their history, applications, and pharmaceutical potentials. The Natural Products Journal 2021;11(3):275-287. doi: 10.2174/2210315510666200128123237.
  41. Elkhateeb WA, Daba GM. Fungi over fungi, endophytic fungi associated with mushroom fruiting bodies and lichens.‏ Journal of Pharmaceutics and Pharmacology Research. 2021;4(2):1-4. doi: 10.31579/2693-7247/028.
  42. Elkhateeb W, Somasekhar T, Thomas P, Wen TC, Daba G. Mycorrhiza and lichens as two models of fungal symbiosis. Journal of Microbiology, Biotechnology and Food Sciences. 2021;11(3):e4644-e4644. doi: 10.15414/jmbfs.4644.
  43. Elkhateeb WA, Elnahas MO, Daba GM. Lichentherapy: Highlights on the pharmaceutical potentials of lichens. Open Access Journal of Microbiology & Biotechnology. 2021;6(1):1-10. doi: 10.23880/oajmb-16000190.
  44. Elkhateeb WA, El-Ghwas DE, Daba GM. Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci. 2022;3:189-194. doi: 10.37871/jbres1420.
  45. Sharma GN, Gupta G, Sharma P. A Comprehensive Review of Free Radicals, Antioxidants, and Their Relationship with Human Ailments. Crit Rev Eukaryot Gene Expr. 2018;28(2):139-154. doi: 10.1615/CritRevEukaryotGeneExpr.2018022258. PMID: 30055541.
  46. Shukla V, Joshi GP, Rawat MS. Lichens as a potential natural source of bioactive compounds: A review. Phytochemistry Reviews. 2010;9:303-314. doi: 10.1007/s11101-010-9189-6.
  47. Seymour FA, Crittenden PD, Dickinson MJ, Paoletti M, Montiel D, Cho L, Dyer PS. Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genet Biol. 2005 Jun;42(6):554-63. doi: 10.1016/j.fgb.2005.03.006. PMID: 15893256.
  48. Nayaka S. Methods, techniques in collection, preservation and identification of lichens. Plant Taxonomy and Biosystematics. In: Classical and modern methods. Rana TS, Nair KN, Upreti DK, editors. New India Publishing Agency; 2014. p.101-105.
  49. Monge-Najera J. Relative humidity, temperature, substrate type, and height of terrestrial lichens in a tropical paramo. Revista de Biologia Tropical. 2019;67(1):1-10. doi: 10.15517/rbt.v67i1.33948.
  50. Bhattacharyya S, Deep PR, Singh S, Nayak B. Lichen secondary metabolites and its biological activity. American Journal of PharmTech Research. 2016;6(6):29-44.
  51. Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 2018 Aug;8(8):334. doi: 10.1007/s13205-018-1358-0. Epub 2018 Jul 23. PMID: 30073119; PMCID: PMC6056353.
  52. Paterson RR. Ganoderma - a therapeutic fungal biofactory. Phytochemistry. 2006 Sep;67(18):1985-2001. doi: 10.1016/j.phytochem.2006.07.004. Epub 2006 Aug 14. PMID: 16905165.
  53. Hapuarachchi KK, Elkhateeb WA, Karunarathna SC, Cheng CR, Bandara AR, Kakumyan P, Wen TC. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere. 2018;9(5):1025-1052. doi 10.5943/mycosphere/9/5/6.
  54. Bryant JM, Bouchard M, Haque A. Anticancer Activity of Ganoderic Acid DM: Current Status and Future Perspective. J Clin Cell Immunol. 2017;8(6):535. doi: 10.4172/2155-9899.1000535. Epub 2017 Dec 12. PMID: 29399381; PMCID: PMC5795599.
  55. Feng J, Zhang JS, Jia W, Yang Y, Liu F, Lin CC. An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect. Biotechnology and Bioprocess Engineering. 2014;19:727-32. doi: 10.1007/s12257-014-0049-x.
  56. Xu P, Ding ZY, Qian Z, Zhao CX, Zhang KC. Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme and Microbial Technology. 2008;42:325-331. doi: 10.1016/j.enzmictec.2007.10.016.
  57. Shiao MS. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem Rec. 2003;3(3):172-80. doi: 10.1002/tcr.10058. PMID: 12900937.
  58. Mitchell DA, Sassaki GL, De Almeida Amazonas MAL, Berovic M. Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technology and Biotechnology. 2003;41:371-382.
  59. Zhang DW, Wang ZL, Qi W, Lei W, Zhao GY. Cordycepin (3'-deoxyadenosine) down-regulates the proinflammatory cytokines in inflammation-induced osteoporosis model. Inflammation. 2014 Aug;37(4):1044-9. doi: 10.1007/s10753-014-9827-z. PMID: 24493324.
  60. Sliva D, Sedlak M, Slivova V, Valachovicova T, Lloyd FP Jr, Ho NW. Biologic activity of spores and dried powder from Ganoderma lucidum for the inhibition of highly invasive human breast and prostate cancer cells. J Altern Complement Med. 2003 Aug;9(4):491-7. doi: 10.1089/107555303322284776. PMID: 14499024.
  61. Zhang XQ, Ip FC, Zhang DM, Chen LX, Zhang W, Li YL, Ip NY, Ye WC. Triterpenoids with neurotrophic activity from Ganoderma lucidum. Nat Prod Res. 2011 Oct;25(17):1607-13. doi: 10.1080/14786419.2010.496367. Epub 2011 Jun 13. PMID: 21671206.
  62. Jianghai GDZ, Xin L. A review and prospect on the studies of Cordyceps sinensis (Berk) Sacc [J]. Journal of Chinese Institute of Food Science and Technology. 2006.
  63. Hongchun G, Jiquan G, Qianyun X, Xiaohong, L. Research and development for Cordyceps sinensis. 2003;23(1):50-55.
  64. Yang FQ, Li DQ, Feng K, Hu DJ, Li SP. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. J Chromatogr A. 2010 Aug 20;1217(34):5501-10. doi: 10.1016/j.chroma.2010.06.062. Epub 2010 Jun 30. PMID: 20637470.
  65. Paterson RR. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008 May;69(7):1469-95. doi: 10.1016/j.phytochem.2008.01.027. Epub 2008 Mar 17. PMID: 18343466; PMCID: PMC7111646.
  66. Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013 Apr;65(4):474-93. doi: 10.1111/j.2042-7158.2012.01601.x. Epub 2012 Oct 23. PMID: 23488776.
  67. Kondrashov A, Meijer HA, Barthet-Barateig A, Parker HN, Khurshid A, Tessier S, Sicard M, Knox AJ, Pang L, De Moor CH. Inhibition of polyadenylation reduces inflammatory gene induction. RNA. 2012 Dec;18(12):2236-50. doi: 10.1261/rna.032391.112. Epub 2012 Nov 1. PMID: 23118416; PMCID: PMC3504674.
  68. Ashraf S, Radhi M, Gowler P, Burston JJ, Gandhi RD, Thorn GJ, Piccinini AM, Walsh DA, Chapman V, de Moor CH. The polyadenylation inhibitor cordycepin reduces pain, inflammation and joint pathology in rodent models of osteoarthritis. Sci Rep. 2019 Mar 18;9(1):4696. doi: 10.1038/s41598-019-41140-1. PMID: 30886197; PMCID: PMC6423048.
  69. Wei L. Research advanced in functional composition content of Cordyceps. West Chin Journal of Pharmaceutical Sciences. 2003;18:359-360.
  70. Shi YX. Update on researches of pharmacological effects of Cordyceps. Chin Pharm. 2005;14:72-74.
  71. He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion's Mane) mushroom: A review. Int J Biol Macromol. 2017 Apr;97:228-237. doi: 10.1016/j.ijbiomac.2017.01.040. Epub 2017 Jan 10. PMID: 28087447.
  72. Kuo M. Schizophyllum Commune. 2003.
  73. Miller H, Miller OK. North American Mushrooms: A field guide to edible and inedible fungi. Guilford, CN: FalconGuide; 2003. p.139.
  74. Davis RM, Sommer R, Menge JA. Field guide to mushrooms of Western North America. Berkeley: University of California Press; 2012. p.131-132.
  75. Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. Materials (Basel). 2021 Oct 11;14(20):5965. doi: 10.3390/ma14205965. PMID: 34683560; PMCID: PMC8539628.
  76. Rahman MM, Islam MR, Shohag S, Hossain ME, Rahaman MS, Islam F, Ahmed M, Mitra S, Khandaker MU, Idris AM, Chidambaram K, Emran TB, Cavalu S. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules. 2022 Mar 6;27(5):1713. doi: 10.3390/molecules27051713. PMID: 35268815; PMCID: PMC8911649.
  77. Hosseini M, Salam A, and Makhlouf H. Industrial Applications for Intelligent Polymers and Coatings. Berlin, Germany. Spinger; 2016.
  78. Mayell M. Maitake extracts and their therapeutic potential. Altern Med Rev. 2001 Feb;6(1):48-60. PMID: 11207456.
  79. Cohen N, Cohen J, Asatiani MD, Varshney VK, Yu HT, Yang YC, Li YH, Mau JL, Wasser SP. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms. 2014;16(3):273-91. doi: 10.1615/intjmedmushr.v16.i3.80. PMID: 24941169.
  80. Tabata T, Yamasaki Y, Ogura T. Comparison of chemical compositions of Maitake (Grifola frondosa (Fr.) SF Gray) cultivated on logs and sawdust substrate. Food Sci Technol Res. 2004;10:21-24.
  81. Huang SJ, Tsai SY, Lin SY, Liang CH, Mau JL. Nonvolatile taste components of culinary-medicinal maitake mushroom, Grifola frondosa (Dicks.:Fr.) S.F. Gray. Int J Med Mushrooms. 2011;13(3):265-72. doi: 10.1615/intjmedmushr.v13.i3.60. PMID: 22135878.
  82. Nanba H, Hamaguchi A, Kuroda H. The chemical structure of an antitumor polysaccharide in fruit bodies of Grifola frondosa (maitake). Chem Pharm Bull (Tokyo). 1987 Mar;35(3):1162-8. doi: 10.1248/cpb.35.1162. PMID: 3607939.
  83. Alonso EN, Orozco M, Eloy Nieto A, Balogh GA. Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells. J Med Food. 2013 Jul;16(7):602-17. doi: 10.1089/jmf.2012.0222. PMID: 23875900; PMCID: PMC3719462.
  84. Mayuzumi Y, Mizuno T. III. Cultivation methods of maitake (Grifola frondosa). Food Rev Int. 1997;13:357-364. doi: 10.1080/87559129709541117.
  85. Lee IK, Yun BS, Cho SM, Kim WG, Kim JP, Ryoo IJ, Koshino H, Yoo ID. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod. 1996 Nov;59(11):1090-2. doi: 10.1021/np960253z. PMID: 8946751.
  86. Branislav R, Marijana M. The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World Journal of Microbiology and Biotechnology. 2008;24:1239-1242. doi: 10.1007/s11274-007-9580-7.
  87. Cocchietto M, Skert N, Nimis PL, Sava G. A review on usnic acid, an interesting natural compound. Naturwissenschaften. 2002 Apr;89(4):137-46. doi: 10.1007/s00114-002-0305-3. PMID: 12061397.
  88. Galanty A, Paśko P, Podolak I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem Rev. 2019;18(2):527-548. doi: 10.1007/s11101-019-09605-3.
  89. Türk H, Yilmaz M, Tay T, Türk AO, Kivanç M. Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch C J Biosci. 2006 Jul-Aug;61(7-8):499-507. doi: 10.1515/znc-2006-7-806. PMID: 16989308.
  90. Macedo DC, Almeida FJ, Wanderley MS, Ferraz MS, Santos NP, López AM, Santos-Magalhães NS, Lira-Nogueira MC. Usnic acid: from an ancient lichen derivative to promising biological and nanotechnology applications. Photochemistry Reviews. 2020;20(4):1-22. doi: 10.1007/s11101-020-09717-1.
  91. Moura JB, Vargas AC, Gouveia GV, Gouveia JJ, Ramos-Júnior JC, Botton SD, Pereira EC, Costa M. In vitro antimicrobial activity of the organic extract of Cladonia substellata Vainio and usnic acid against Staphylococcus spp. obtained from cats and dogs. Pesquisa Veterinária Brasileira. 2017;37(4):368-378. doi: 10.1590/S0100-736X2017000400011.
  92. Noël A, Garnier A, Clément M, Rouaud I, Sauvager A, Bousarghin L, Vásquez-Ocmín P, Maciuk A, Tomasi S. Lichen-associated bacteria transform antibacterial usnic acid to products of lower antibiotic activity. Phytochemistry. 2021 Jan;181:112535. doi: 10.1016/j.phytochem.2020.112535. Epub 2020 Oct 21. PMID: 33099225.
  93. Odimegwu DC, Ngwoke K, Ejikeugwu C, Esimone CO. Lichen secondary metabolites as possible antiviral agents. In: Lichen secondary metabolites. Springer Cham; 2019. p.199-214.
  94. Bhattacharjya R, Begum A, Tiwari A. Role of Algae–fungi relationship in sustainable agriculture. In: Agriculturally important fungi for sustainable agriculture. Springer Cham; 2020. p.227-254.
  95. Gylfason AE. Content and distribution of usnic acid enantiomers in three Icelandic lichen taxa (Doctoral dissertation); 2019.
  96. Yousuf S, Choudhary M, Rahman A. Lichens: Chemistry and biological activities. Studies in Natural Products Chemistry. 2014;43:223-259. doi: 10.1016/B978-0-444-63430-6.00007-2.
  97. Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, Arias AR, Feresin GE. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res. 2008 Mar;22(3):349-55. doi: 10.1002/ptr.2321. PMID: 18058986.
  98. Sarikurkcu C, Kocak MS, Calapoglu M, Ocal C, Tepe B. Biological and phytochemical evaluation: Pseudevernia furfuracea as an alternative multifunctional agent. Journal of Functional Foods. 2016;24:11-17. doi: 10.1016/j.jff.2016.03.022.
  99. Honda NK, Pavan FR, Coelho RG, de Andrade Leite SR, Micheletti AC, Lopes TI, Misutsu MY, Beatriz A, Brum RL, Leite CQ. Antimycobacterial activity of lichen substances. Phytomedicine. 2010 Apr;17(5):328-32. doi: 10.1016/j.phymed.2009.07.018. Epub 2009 Aug 14. PMID: 19683421.
  100. Paudel B, Bhattarai HD, Lee HK, Oh H, Shin HW, Yim JH. Antibacterial activities of Ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. Z Naturforsch C J Biosci. 2010 Jan-Feb;65(1-2):34-8. doi: 10.1515/znc-2010-1-206. PMID: 20355318.
  101. Ranković B. Lichen Secondary Metabolites. Cham: Springer International Publishing; 2015. p.202.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search