Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

Research Progress on Anti-Tumor Mechanism of Tannins in Traditional Chinese Medicine

Medicine Group    Start Submission

Hui Ding, Yuxin Wang, Gen Li, Yingling Dong, Xinyu Dai, Chenglong Kang, Kai Li, Haixing Han, Xuling Peng* and Xi Chen*

Volume4-Issue4
Dates: Received: 2023-01-25 | Accepted: 2023-04-24 | Published: 2023-04-26
Pages: 779-792

Abstract

By reviewing the literature on the efficacy of tannins in traditional Chinese medicine in the last decade or so, we have classified the anti-tumor mechanism of tannins in conjunction with the latest mechanism exploration in the field of oncology. Tannins, a class of multi-phenolic compounds widely present in the diet, have been studied by scholars worldwide in recent years because of their relatively outstanding pharmacological activities. The mechanisms of anti-tumor action of tannins can be summarized as follows: the arrest of the cell cycle, arrest of tumor migration, enhancement of immune competence, induction of apoptosis, and antioxidant effects.

FullText HTML FullText PDF DOI: 10.37871/jbres1736


Certificate of Publication




Copyright

© 2023 Ding H, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ding H, Wang Y, Li G, Dong Y, Dai X, Kang C, Li K, Han H, Peng X, Chen X. Research Progress on Anti-Tumor Mechanism of Tannins in Traditional Chinese Medicine. J Biomed Res Environ Sci. 2023 Apr 26; 4(4): 779-792. doi: 10.37871/jbres1736, Article ID: JBRES1736, Available at: https://www.jelsciences.com/articles/jbres1736.pdf


Subject area(s)

References


  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12. PMID: 35020204.
  2. Das AK, Islam MN, Faruk MO, Ashaduzzaman M, Dungani R. Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany. 2020;135:58-70. doi: 10.1016/j.sajb.2020.08.008. PubMed PMID: WOS:000614695800007.
  3. Okuda T, Ito H. Tannins of Constant Structure in Medicinal and Food Plants-Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules. 2011;16(3):2191-217. doi: 10.3390/molecules16032191. PubMed PMID: WOS:000288853400018.
  4. Yang T, Dong M, Cui J, Gan L, Han S. Exploring the formaldehyde reactivity of tannins with different molecular weight distributions: bayberry tannins and larch tannins. Holzforschung. 2020;74(7): 673-682. doi:10.1515/hf-2019-0050. PubMed PMID: WOS:000552030600005
  5. Xie Z, Wang M, Deng Y, Li J, Li J, Pang W, Xie L, Jiang D, Huang Z, He T, Yang G. Acute toxicity of eucalyptus leachate tannins to zebrafish and the mitigation effect of Fe3+ on tannin toxicity. Ecotoxicol Environ Saf. 2022 Jan 1;229:113077. doi: 10.1016/j.ecoenv.2021.113077. Epub 2021 Dec 13. PMID: 34915221.
  6. Matsumoto K, Kadowaki A, Ozaki N, Takenaka M, Ono H, Yokoyama S, et al. Bile Acid-binding Ability of Kaki-tannin from Young Fruits of Persimmon (Diospyros kaki) In Vitro and In Vivo. Phytotherapy Research. 2011;25(4):624-8. doi: 10.1002/ptr.3306. PubMed PMID: WOS:000288857300024.
  7. Ogawa S, Yazaki Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin Determination and Biological Activities. Molecules. 2018 Apr 5;23(4):837. doi: 10.3390/molecules23040837. PMID: 29621196; PMCID: PMC6017853.
  8. Oleson KR, Sprenger KG, Pfaendtner J, Schwartz DT. Inhibition of the Exoglucanase Cel7A by a Douglas-Fir-Condensed Tannin. J Phys Chem B. 2018 Sep 20;122(37):8665-8674. doi: 10.1021/acs.jpcb.8b05850. Epub 2018 Sep 10. PMID: 30111095.
  9. Melo LFM, Aquino-Martins VGQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023 Jul 15;414:135645. doi: 10.1016/j.foodchem.2023.135645. Epub 2023 Feb 6. PMID: 36821920.
  10. Kicker E, Tittel G, Schaller T, Pferschy-Wenzig EM, Zatloukal K, Bauer R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. PHYTOMEDICINE. 2022;98. doi: 10.1016/j.phymed.2022.153970. PubMed PMID: WOS:000795138100003.
  11. Li F, Li Y, Deng ZP, Zhu XJ, Zhang ZG, Zhang XD, et al. Traditional uses, phytochemistry, pharmacology and clinical applications of Cortex Juglandis Mandshuricae: A comprehensive review. Journal of Ethnopharmacology. 2022;285. doi: 10.1016/j.jep.2021.114887. PubMed PMID: WOS:000789641900006.
  12. Alqahtani SM, Altharawi A, Alabbas AB, Alossaimi MA, Kamal M, Alasmary FA, et al. Evaluation of Haloxylon Persicum Leaves Ethanolic Extract for Phytochemical, Antioxidant, Anticancer, and Antimicrobial Properties. CURRENT TOPICS IN NUTRACEUTICAL RESEARCH. 2022;20(2):424-30. doi: 10.37290/ctnr2641-452X.20:424-430. PubMed PMID: WOS:000791880100030.
  13. Huo JL, Fu WJ, Liu ZH, Lu N, Jia XQ, Liu ZS. Research advance of natural products in tumor immunotherapy. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.972345. PubMed PMID: WOS:000860895700001.
  14. Taniguchi S, Hatano T, Yazaki K. Production of tannin by tissue culture of woody plants and tannin biosynthesis. Mokuzai Gakkaishi. 2006;52(2):67-76. doi: 10.2488/jwrs.52.67. PubMed PMID: WOS:000237466800001.
  15. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. NATURE REVIEWS MOLECULAR CELL BIOLOGY. 2022;23(1):74-88. doi: 10.1038/s41580-021-00404-3. PubMed PMID: WOS:000694780200001.
  16. Gupta A, Singh AK, Kumar R, Ganguly R, Rana HK, Pandey PK, et al. Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules. 2019;24(18). doi: 10.3390/molecules24183399. PubMed PMID: WOS:000488830500191.
  17. Clifford MN, Scalbert A. Ellagitannins - nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture. 2000;80(7):1118-25. doi: 10.1002/(sici)1097-0010(20000515)80:7<1118::Aid-jsfa570>3.3.Co;2-0. PubMed PMID: WOS:000087079800018.
  18. Larrosa M, Tomas-Barberan FA, Espin JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry. 2006;17(9):611-25. doi: 10.1016/j.jnutbio.2005.09.004. PubMed PMID: WOS:000240160200005.
  19. Zhao TJ, Sun Q, del Rincon SV, Lovato A, Marques M, Witcher M. Gallotannin Imposes S Phase Arrest in Breast Cancer Cells and Suppresses the Growth of Triple-Negative Tumors In Vivo. Plos One. 2014;9(3). doi: 10.1371/journal.pone.0092853. PubMed PMID: WOS:000333355300134.
  20. Al-Ayyoubi S, Gali-Muhtasib H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Molecular Carcinogenesis. 2007;46(3):176-86. doi: 10.1002/mc.20252. PubMed PMID: WOS:000244597500002.
  21. Chen JD. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine. 2016;6(3). doi: 10.1101/cshperspect.a026104. PubMed PMID: WOS:000371175800002.
  22. Kamei H, Koide T, Hashimoto Y, Kojima T, Hasegawa M. Tumor cell growth suppression by tannic acid. Cancer Biotherapy and Radiopharmaceuticals. 1999;14(2):135-8. doi: 10.1089/cbr.1999.14.135. PubMed PMID: WOS:000080031900010.
  23. Chupin L, Motillon C, Charrier-El Bouhtoury F, Pizzi A, Charrier B. Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Industrial Crops and Products. 2013;49:897-903. doi: 10.1016/j.indcrop.2013.06.045. PubMed PMID: WOS:000324566600120.
  24. Ashraf W, Ahmad T, Almalki NAR, Krifa M, Zaayter L, Pizzi A, et al. Tannin extract from maritime pine bark exhibits anticancer properties by targeting the epigenetic UHRF1/DNMT1 tandem leading to the re-expression of TP73. Food & Function. 2022;13(1):316-26. doi: 10.1039/d1fo01484f. PubMed PMID: WOS:000729461500001.
  25. Alhosin M, Sharif T, Mousli M, Etienne-Selloum N, Fuhrmann G, Schini-Kerth VB, et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. Journal of Experimental & Clinical Cancer Research. 2011;30. doi: 10.1186/1756-9966-30-41. PubMed PMID: WOS:000290683600001.
  26. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760-4. doi: 10.1126/science.1147939. PubMed PMID: WOS:000249585900051.
  27. Jia LQ, Jin HY, Zhou JY, Chen LH, Lu YL, Ming YL, et al. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-beta signaling pathways. Bmc Complementary and Alternative Medicine. 2013;13. doi: 10.1186/1472-6882-13-33. PubMed PMID: WOS:000315655200001.
  28. Crncec A, Hochegger H. Triggering mitosis. Febs Letters. 2019;593(20):2868-88. doi: 10.1002/1873-3468.13635. PubMed PMID: WOS:000492027800001.
  29. Wu CQ, Huang HQ, Choi HY, Ma YR, Zhou TX, Peng Y, et al. Anti-esophageal Cancer Effect of Corilagin Extracted from Phmllanthi Fructus via the Mitochondrial and Endoplasmic Reticulum Stress Pathways. Journal of Ethnopharmacology. 2021;269. doi: 10.1016/j.jep.2020.113700. PubMed PMID: WOS:000613990200003.
  30. Horimoto Y, Polanska UM, Takahashi Y, Orimo A. Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adhesion & Migration. 2012;6(3):193-202. doi: 10.4161/cam.20631. PubMed PMID: WOS:000307868700008.
  31. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Seminars in Cancer Biology. 2000;10(6):415-33. doi: 10.1006/scbi.2000.0379. PubMed PMID: WOS:000167134100004.
  32. Chen X, Beutler JA, McCloud TG, Loehfelm A, Yang L, Dong HF, et al. Tannic acid is an inhibitor of CXCL12 (SDF-1 alpha)/CXCR4 with antiangiogenic activity. Clinical Cancer Research. 2003;9(8):3115-23. PubMed PMID: WOS:000184680200034.
  33. dos Santos KM, Nunes DAD, Izabela Natalia de Faria Gomes G, da Silva SL, Ribeiro RID. INHIBITION OF GELATINASE ACTIVITY OF MMP-2 AND MMP-9 BY EXTRACTS OF Bauhinia ungulata L. Bioscience Journal. 2015;31(2):584-90. doi: 10.14393/BJ-v31n2a2015-23477. PubMed PMID: WOS:000350406200028.
  34. Chu SC, Yang SF, Liu SJ, Kuo WH, Chang YZ, Hsieh YS. In vitro and in vivo antimetastatic effects of Terminalia catappa L. leaves on lung cancer cells. Food and Chemical Toxicology. 2007;45(7):1194-201. doi: 10.1016/j.fct.2006.12.028. PubMed PMID: WOS:000247537800014.
  35. Feng ZR, Yu QX, Zhang T, Tie WP, Li J, Zhou XK. Updates on mechanistic insights and targeting of tumour metastasis. Journal of Cellular and Molecular Medicine. 2020;24(3):2076-86. doi: 10.1111/jcmm.14931. PubMed PMID: WOS:000507858900001.
  36. Bohle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Archives of Surgery. 1999;384(2):133-40. doi: 10.1007/s004230050183. PubMed PMID: WOS:000079829200002.
  37. Lee SJ, Lee HM, Jie ST, Lee SR, Mar W, Gho YS. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Letters. 2004;208(1):89-94. doi: 10.1016/j.canlet.2003.11.008. PubMed PMID: WOS:000221369000009.
  38. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental Cell Research. 2006;312(5):549-60. doi: 10.1016/j.yexcr.2005.11.012. PubMed PMID: WOS:000236087600005.
  39. Liu F, Cui YL, Yang F, Xu ZJ, Da LT, Zhang Y. Inhibition of polypeptide N-acetyl-alpha-galactosaminyltransferases is an underlying mechanism of dietary polyphenols preventing colorectal tumorigenesis. Bioorganic & Medicinal Chemistry. 2019;27(15):3372-82. doi: 10.1016/j.bmc.2019.06.020. PubMed PMID: WOS:000476649400018.
  40. Gerken TA, Revoredo L, Thome JJC, Tabak LA, Vester-Christensen MB, Clausen H, et al. Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation. Journal of Biological Chemistry. 2013;288(27):19900-14. doi: 10.1074/jbc.M113.477877. PubMed PMID: WOS:000321515800056.
  41. Beaman EM, Carter DRF, Brooks SA. GALNTs: master regulators of metastasis-associated epithelial-mesenchymal transition (EMT)? Glycobiology. 2022;32(7):556-79. doi: 10.1093/glycob/cwac014. PubMed PMID: WOS:000785833500001.
  42. Nagata S. Apoptosis and Clearance of Apoptotic Cells. In: Littman DR, Yokoyama WM, editors. Annual Review of Immunology, Vol 36. Annual Review of Immunology. 362018. p. 489-517.
  43. Lan CH, Sheng JQ, Fang DC, Meng QZ, Fan LL, Huang ZR. Involvement of VDAC1 and Bcl-2 family of proteins in VacA-induced cytochrome c release and apoptosis of gastric epithelial carcinoma cells. Journal of Digestive Diseases. 2010;11(1):43-9. doi: 10.1111/j.1751-2980.2009.00412.x. PubMed PMID: WOS:000274260400007.
  44. Bai CF, Sun YS, Pan XC, Yang J, Li XX, Wu AG, et al. Antitumor Effects of Trimethylellagic Acid Isolated From Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Frontiers in Pharmacology. 2020;10. doi: 10.3389/fphar.2019.01646. PubMed PMID: WOS:000514703500001.
  45. Kuo PL, Hsu YL, Lin TC, Lin LT, Chang JK, Lin CC. Casuarinin from the bark of Terminalia arjuna induces apoptosis and cell cycle arrest in human breast adenocarcinoma MCF-7 cells. Planta Medica. 2005;71(3):237-43. doi: 10.1055/s-2005-837823. PubMed PMID: WOS:000227912500008.
  46. Xu JJ, Zhang GY, Tong YP, Yuan JH, Li YY, Song G. Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. International journal of molecular medicine. 2019;43(2):967-79. doi: 10.3892/ijmm.2018.4031. PubMed PMID: WOS:000454923000031.
  47. AlMalki FA, Hassan AM, Klaab ZM, Abdulla S, Pizzi A. Tannin Nanoparticles (NP99) Enhances the Anticancer Effect of Tamoxifen on ER+ Breast Cancer Cells. Journal of Renewable Materials. 2021;9(12):2077-92. doi: 10.32604/jrm.2021.016173. PubMed PMID: WOS:000664384100003.
  48. Li TM, Chen GW, Su CC, Lin JG, Yeh CC, Cheng KC, Chung JG. Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Res. 2005 Mar-Apr;25(2A):971-9. PMID: 15868936.
  49. Wang CC, Chen LG, Yang LL. Cuphiin D-1, the macrocyclic hydrolyzable tannin induced apoptosis in HL-60 cell line. Cancer Letters. 2000;149(1-2):77-83. doi: 10.1016/s0304-3835(99)00344-4. PubMed PMID: WOS:000085712200011.
  50. Ouwehand A, Isolauri E, Salminen S. The role of the intestinal microflora for the development of the immune system in early childhood. European journal of nutrition. 2002;41 Suppl 1:I32-7. Epub 2002/11/07. doi: 10.1007/s00394-002-1105-4. PubMed PMID: 12420114.
  51. Martin-Gallausiaux C, Marinelli L, Blottiere HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 2021;80(1):37-49. doi: 10.1017/s0029665120006916. PubMed PMID: WOS:000648952600005.
  52. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084-9. doi: 10.1126/science.aac4255. PubMed PMID: WOS:000366422600042.
  53. Takkenkamp TJ, Jalving M, Hoogwater FJH, Walenkamp AME. The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors. Endocrine-Related Cancer. 2020;27(9):E329-E43. doi: 10.1530/erc-20-0113. PubMed PMID: WOS:000574807100005.
  54. Molino S, Fernandez-Miyakawa M, Giovando S, Rufian-Henares JA. Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. Journal of Functional Foods. 2018;49:188-95. doi: 10.1016/j.jff.2018.07.056. PubMed PMID: WOS:000447818000020.
  55. Duenas M, Munoz-Gonzalez I, Cueva C, Jimenez-Giron A, Sanchez-Patan F, Santos-Buelga C, et al. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. Biomed Research International. 2015;2015. doi: 10.1155/2015/850902. PubMed PMID: WOS:000351111000001.
  56. Orso G, Solovyev MM, Facchiano S, Tyrikova E, Sateriale D, Kashinskaya E, Pagliarulo C, Hoseinifar HS, Simonov E, Varricchio E, Paolucci M, Imperatore R. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals (Basel). 2021 May 25;11(6):1538. doi: 10.3390/ani11061538. PMID: 34070355; PMCID: PMC8228309.
  57. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, Lleonart ME. Oxidative stress and cancer: An overview. Ageing Research Reviews. 2013;12(1):376-90. doi: 10.1016/j.arr.2012.10.004. PubMed PMID: WOS:000315125800035.
  58. Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, et al. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients. 2019;11(1). doi: 10.3390/nu11010023. PubMed PMID: WOS:000457474600038.
  59. Sajadimajd S, Khazaei M. Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets. 2018;18(6):538-57. doi: 10.2174/1568009617666171002144228. PubMed PMID: WOS:000435089100003.
  60. Fang L, Wang H, Zhang J, Fang XL. Punicalagin induces ROS-mediated apoptotic cell death through inhibiting STAT3 translocation in lung cancer A549 cells. Journal of biochemical and molecular toxicology. 2021;35(6). doi: 10.1002/jbt.22771. PubMed PMID: WOS:000628874800001.
  61. Bona NP, Soares MSP, Pedra NS, Spohr L, dos Santos FD, de Farias AS, et al. Tannic Acid Attenuates Peripheral and Brain Changes in a Preclinical Rat Model of Glioblastoma by Modulating Oxidative Stress and Purinergic Signaling. Neurochemical Research. 2022;47(6):1541-52. doi: 10.1007/s11064-022-03547-7. PubMed PMID: WOS:000757115200001.
  62. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxidative Medicine and Cellular Longevity. 2019;2019. doi: 10.1155/2019/6175804. PubMed PMID: WOS:000481940900001.
  63. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-74. doi: 10.1016/j.cell.2011.02.013. PubMed PMID: WOS:000288007100007.
  64. Kundu JK, Surh YJ. Inflammation: Gearing the journey to cancer. Mutation Research-Reviews in Mutation Research. 2008;659(1-2):15-30. doi: 10.1016/j.mrrev.2008.03.002. PubMed PMID: WOS:000258811000004.
  65. Rahat MA, Hemmerlein B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Frontiers in Physiology. 2013;4. doi: 10.3389/fphys.2013.00144. PubMed PMID: WOS:000346774000142.
  66. Al-Halabi R, Chedid MB, Abou Merhi R, El-Hajj H, Zahr H, Schneider-Stock R, et al. Gallotannin inhibits NF kappa B signaling and growth of human colon cancer xenografts. Cancer Biology & Therapy. 2011;12(1):59-68. doi: 10.4161/cbt.12.1.15715. PubMed PMID: WOS:000292290900006.
  67. Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nature reviews Immunology. 2008;8(11):837-48. Epub 2008/10/18. doi: 10.1038/nri2423. PubMed PMID: 18927578.
  68. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461-6. doi: 10.1038/nature02924. PubMed PMID: WOS:000224000500043.
  69. Abd-Rabou AA, Shalby AB, Kotob SE. Newly Synthesized Punicalin and Punicalagin Nano-Prototypes Induce Breast Cancer Cytotoxicity Through ROS-Mediated Apoptosis. Asian Pac J Cancer Prev. 2022 Jan 1;23(1):363-376. doi: 10.31557/APJCP.2022.23.1.363. PMID: 35092406; PMCID: PMC9258674.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search