Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

PLGA Nanoparticles with Cannabidiol for Efficient and Durable Antibacterial Applications

Medicine Group    Start Submission

Ming Cheng, Qiang Ma, Lu Tang, Bo Wang, Liya Liu, Bei Fan, Liang Zhang* and Fengzhong Wang*

Volume4-Issue4
Dates: Received: 2023-04-06 | Accepted: 2023-04-14 | Published: 2023-04-17
Pages: 727-735

Abstract

The Cannabidiol (CBD) are extensively used owing to their potent antibacterial effects. We developed CBD-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles using an emulsion process technology, resulting informing the PLGA@CBD nanoparticles. The emulsion parameters were optimized using three-dimensional surface plots. When scaled up under optimal conditions, the corresponding loading content efficiency were 16.51%. Compared with natural cannabidiol, the physically modified PLGA nanoparticles became smooth, round, and solid, improving their water solubility and bioavailability, realizing long-time antibacterial. Therefore, the nanoparticles showed better efficacy against Gram-positive bacteria. Our results confirm that the PLGA@CBD nanoparticles have been achieved as long-acting antibacterial delivery system, which improved the treatment efficiency.

FullText HTML FullText PDF DOI: 10.37871/jbres1730


Certificate of Publication




Copyright

© 2023 Cheng M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Cheng M, Ma Q, Tang L, Wang B, Liu L, Fan B, Zhang L, Wang F. PLGA Nanoparticles with Cannabidiol for Effi cient and Durable Antibacterial Applications. J Biomed Res Environ Sci. 2023 Apr 17; 4(4): 727-735. doi: 10.37871/jbres1730, Article ID: JBRES1730, Available at: https://www.jelsciences.com/articles/jbres1730.pdf


Subject area(s)

References


  1. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL; Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019 Jan;19(1):56-66. doi: 10.1016/S1473-3099(18)30605-4. Epub 2018 Nov 5. PMID: 30409683; PMCID: PMC6300481.
  2. Richter MF, Drown BS, Riley AP, Garcia A, Shirai T, Svec RL, Hergenrother PJ. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature. 2017 May 18;545(7654):299-304. doi: 10.1038/nature22308. Epub 2017 May 10. PMID: 28489819; PMCID: PMC5737020.
  3. Sousa MC. New antibiotics target the outer membrane of bacteria. Nature. 2019 Dec;576(7787):389-390. doi: 10.1038/d41586-019-03730-x. PMID: 31844257.
  4. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018 Jul;16(7):397-409. doi: 10.1038/s41579-018-0019-y. PMID: 29720707.
  5. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014 Sep 16;2:145. doi: 10.3389/fpubh.2014.00145. PMID: 25279369; PMCID: PMC4165128.
  6. Wang LS, Gupta A, Rotello VMJAID. Nanomaterials for the Treatment of Bacterial Biofilms [J]. 2015;2(1): 151021155851001.
  7. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. Epub 2013 Jul 24. PMID: 23892192.
  8. Soenen SJ, Rivera-Gil P, Montenegro JM, et al. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. 2011;6(5):446-65.
  9. Bee SL, Hamid ZAA, Mariatti M, et al. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review [J]. Polymer Reviews. 2018;58(3):495-536.
  10. McManamon C, de Silva JP, Delaney P, Morris MA, Cross GLW. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:102-108. doi: 10.1016/j.msec.2015.09.103. Epub 2015 Oct 1. PMID: 26652354.
  11. Kim JK, Go EJ, Ko KW, Oh HJ, Han J, Han DK, Park W. PLGA Microspheres Containing Hydrophobically Modified Magnesium Hydroxide Particles for Acid Neutralization-Mediated Anti-Inflammation. Tissue Eng Regen Med. 2021 Aug;18(4):613-622. doi: 10.1007/s13770-021-00338-z. Epub 2021 Apr 20. PMID: 33877618; PMCID: PMC8325726.
  12. Zhang E, Osipova N, Sokolov M, Maksimenko O, Semyonkin A, Wang M, Grigartzik L, Gelperina S, Sabel BA, Henrich-Noack P. Exploring the systemic delivery of a poorly water-soluble model drug to the retina using PLGA nanoparticles. Eur J Pharm Sci. 2021 Sep 1;164:105905. doi: 10.1016/j.ejps.2021.105905. Epub 2021 Jun 8. PMID: 34116175.
  13. Grune C, Zens C, Czapka A, Scheuer K, Thamm J, Hoeppener S, Jandt KD, Werz O, Neugebauer U, Fischer D. Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. Int J Pharm. 2021 Apr 15;599:120404. doi: 10.1016/j.ijpharm.2021.120404. Epub 2021 Feb 26. PMID: 33647413.
  14. Cao J, Yuan L, Long CJAMUSETH. Preparation and in vitro Biocompatibility of Heparin-loaded PLGA Nanoparticles [J]. 2012.
  15. Shah P, Sarolia J, Vyas B, Wagh P, Ankur K, Kumar MA. PLGA Nanoparticles for Nose to Brain Delivery of Clonazepam: Formulation, Optimization by 32 Factorial Design, In Vitro and In Vivo Evaluation. Curr Drug Deliv. 2021;18(6):805-824. doi: 10.2174/1567201817666200708115627. PMID: 32640955.
  16. Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021 Dec;28(1):1397-1418. doi: 10.1080/10717544.2021.1938756. PMID: 34184949; PMCID: PMC8248937.
  17. Kumar SS, Gopalakrishnan G, Gowrishankar NLJRJOP, et al. Design, Optimization and in vitro Characterization of Dasatinib loaded PLGA Nano carrier for Targeted cancer therapy: A Preliminary Evaluation [J]. 2021;(14-4).
  18. Fagherazzi EV, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, Busato SB, Hallak JE, Zuardi AW, Crippa JA, Schröder N. Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berl). 2012 Feb;219(4):1133-40. doi: 10.1007/s00213-011-2449-3. Epub 2011 Aug 26. PMID: 21870037.
  19. Chetia S, Borah G. Δ 9-Tetrahydrocannabinol Toxicity and Validation of Cannabidiol on Brain Dopamine Levels: An Assessment on Cannabis Duplicity. Nat Prod Bioprospect. 2020 Oct;10(5):285-296. doi: 10.1007/s13659-020-00263-z. Epub 2020 Aug 28. PMID: 32860199; PMCID: PMC7520491.
  20. Appiah-Kusi E, Petros N, Wilson R, Colizzi M, Bossong MG, Valmaggia L, Mondelli V, McGuire P, Bhattacharyya S. Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology (Berl). 2020 Apr;237(4):1121-1130. doi: 10.1007/s00213-019-05442-6. Epub 2020 Jan 8. PMID: 31915861; PMCID: PMC7113209.
  21. Etges T, Karolia K, Grint T, Taylor A, Lauder H, Daka B, Wright S. An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland who have been prescribed Sativex® (THC:CBD, nabiximols) oromucosal spray. Ther Clin Risk Manag. 2016 Nov 11;12:1667-1675. doi: 10.2147/TCRM.S115014. PMID: 27956834; PMCID: PMC5113923.
  22. Pauli CS, Conroy M, Vanden Heuvel BD, Park SH. Cannabidiol Drugs Clinical Trial Outcomes and Adverse Effects. Front Pharmacol. 2020 Feb 25;11:63. doi: 10.3389/fphar.2020.00063. PMID: 32161538; PMCID: PMC7053164.
  23. Feldman M, Smoum R, Mechoulam R, et al. Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus [J]. 2018;8(1):17696.
  24. Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM. Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod. 2008 Aug;71(8):1427-30. doi: 10.1021/np8002673. Epub 2008 Aug 6. PMID: 18681481.
  25. Król E, de Sousa Borges A, da Silva I, Polaquini CR, Regasini LO, Ferreira H, Scheffers DJ. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Front Microbiol. 2015 Apr 29;6:390. doi: 10.3389/fmicb.2015.00390. PMID: 25972861; PMCID: PMC4413848.
  26. Li H, Chang SL, Chang TR, et al. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity [J]. 2021;334:116070.
  27. Fraguas-Sánchez AI, Fernández-Carballido A, Martin-Sabroso C, Torres-Suárez AI. Stability characteristics of cannabidiol for the design of pharmacological, biochemical and pharmaceutical studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Aug 1;1150:122188. doi: 10.1016/j.jchromb.2020.122188. Epub 2020 May 22. PMID: 32506012.
  28. Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm. 2016 Feb 29;499(1-2):358-367. doi: 10.1016/j.ijpharm.2016.01.020. Epub 2016 Jan 12. PMID: 26795193.
  29. Zhang C, Jia R, Dong Y, et al. Preparation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) microspheres for controlled release of buprofezin [J]. 2019.
  30. Lv P, Zhang D, Guo M, et al. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins [J]. 2019.
  31. Wang H, Ng LF, Chen HL, et al. Study on preparation of PLGA-CS composite membrane scaffold and its characteristics in vitro [J]. 2009.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search