Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

A New Cohesive High-Concentrated Hyaluronic Acid Gel Filler: Correlation between Rheologic Properties and Clinical Indications

Medicine Group    Start Submission

Maria C Issa*, Andreia Fogaca, Eliandre Palermo, Marina Fontes, Hernane S Barud and Alessandra C Dametto

Volume4-Issue4
Dates: Received: 2023-03-24 | Accepted: 2023-04-06 | Published: 2023-04-07
Pages: 614-618

Abstract

Background: Differences among the Available Hyaluronic (HA) gels are relevant to clinical practice as the HA physicochemical characteristics guide cosmetic indications. Besides, the literature still needs more information about the correlation between the HA gel’s behavior through their rheologic parameters and clinical indications.

Objectives: We aim to evaluate the rheological properties of three gels with high concentrations of HA, e.p.t.q. S100®, S300®, and S500® (Jetema®) and extrapolate the results to their behavior after applied to the skin.

Methods: To correlate the physicochemical properties of e.p.t.q. gels to their possible clinical indications, three presentations of these gels were evaluated. The storage modulus (G’), loss modulus (G”), tan δ, complex modulus, viscosity, and cohesiveness were measured by rheology.

Results: The gels were non-Newtonian fluid with pseudoplastic behavior. All of them presented as elastic liquids (G’>G”). The S500 gel showed the highest G’ and complex modulus. S100 gel showed the highest tan δ and cohesiveness. S300 gel showed intermediary properties with tan δ and viscosity similar to the S500.

Discussion: Due to the high G’ and low tan δ, S500 gel is indicated for facial structuring and lifting. On the opposite, low G’ and high tan δ of S100 gel signal for refinement. The intermediate values of the S300 point it to lift or refinement.
Conclusions: According to the rheological results, we can assume that each gel has a specific indication, and the combination of S500, S300, and S100 enables a global facial treatment.

FullText HTML FullText PDF DOI: 10.37871/jbres1717


Certificate of Publication




Copyright

© 2023 Issa MC, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Issa MC, Fogaca A, Palermo E, Fontes M, Barud HS, Dametto AC. A New Cohesive High-Concentrated Hyaluronic Acid Gel Filler: Correlation between Rheologic Properties and Clinical Indications. J Biomed Res Environ Sci. 2023 Apr 06; 4(4): 614-618. doi: 10.37871/jbres1717, Article ID: JBRES1717, Available at: https://www.jelsciences.com/articles/jbres1717.pdf


Subject area(s)

References


  1. Pierre S, Liew S, Bernardin A. Basics of dermal filler rheology. Dermatol Surg. 2015 Apr;41 Suppl 1:S120-6. doi: 10.1097/DSS.0000000000000334. PMID: 25828036.
  2. Zerbinati N, Capillo MC, Sommatis S, Maccario C, Alonci G, Rauso R, Galadari H, Guida S, Mocchi R. Rheological Investigation as Tool to Assess Physicochemical Stability of a Hyaluronic Acid Dermal Filler Cross-Linked with Polyethylene Glycol Diglycidyl Ether and Containing Calcium Hydroxyapatite, Glycine and L-Proline. Gels. 2022 Apr 23;8(5):264. doi: 10.3390/gels8050264. PMID: 35621562; PMCID: PMC9140203.
  3. Kablik J, Monheit GD, Yu L, Chang G, Gershkovich J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg. 2009 Feb;35 Suppl 1:302-12. doi: 10.1111/j.1524-4725.2008.01046.x. PMID: 19207319.
  4. Fagien S, Bertucci V, von Grote E, Mashburn JH. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast Reconstr Surg. 2019 Apr;143(4):707e-720e. doi: 10.1097/PRS.0000000000005429. PMID: 30921116; PMCID: PMC7597953.
  5. Carruthers J, Carruthers A, Humphrey S. Introduction to Fillers. Plast Reconstr Surg. 2015 Nov;136(5 Suppl):120S-131S. doi: 10.1097/PRS.0000000000001770. PMID: 26441092.
  6. Borrell M, Leslie DB, Tezel A. Lift capabilities of hyaluronic acid fillers. J Cosmet Laser Ther. 2011 Feb;13(1):21-7. doi: 10.3109/14764172.2011.552609. Epub 2011 Jan 21. PMID: 21254807.
  7. Edsman KLM, Öhrlund Å. Cohesion of Hyaluronic Acid Fillers: Correlation Between Cohesion and Other Physicochemical Properties. Dermatol Surg. 2018 Apr;44(4):557-562. doi: 10.1097/DSS.0000000000001370. PMID: 29059137; PMCID: PMC5902128.
  8. MEGÍAS-ALGUACIL, D. Characterization of the Linear Viscoelastic Region in Suspensionsof Zirconium Oxide: Cohesive Energy Obtained From the Critical Parameters. Applied Rheology. 2004;14:126-132.
  9. Cotofana S, Hamade H, Bertucci V, Fagien S, Green JB, Pavicic T, Nikolis A, Lachman N, Hadjab A, Frank K. Change in Rheologic Properties of Facial Soft-Tissue Fillers across the Physiologic Angular Frequency Spectrum. Plast Reconstr Surg. 2021 Aug 1;148(2):320-331. doi: 10.1097/PRS.0000000000008188. PMID: 34398083.
  10. Heitmiller K, Ring C, Saedi N. Rheologic properties of soft tissue fillers and implications for clinical use. J Cosmet Dermatol. 2021 Jan;20(1):28-34. doi: 10.1111/jocd.13487. Epub 2020 Aug 7. PMID: 32413205.
  11. Won Lee, Jh-Y, Ik-Soo Koh, Wook Oh, Ki-Wook Kim, Eun-Jung Yang. Clinical application of a new hyaluronicacid filler based on its rheologicalproperties and the anatomical site of injection. Biomedical Dermatology. 2018.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search