Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Inter-Relationship between Malaria, Probiotic Food Intake and Gut Microbiota Status among Malaria Patients

Biology Group    Start Submission

Achu Jordan Awah-Nanzdum, Theresia Njuabe Metoh*, Mabel Kaghou Mbifung, Chi Tchampo Fru, Achille Chi Djouosseu, Nina Ghislain Yensii, Ndi Bertrand Bongjo, Marthe Ngo-Matip and Carl Moses Mbofung

Volume4-Issue4
Dates: Received: 2023-03-18 | Accepted: 2023-04-03 | Published: 2023-04-04
Pages: 600-609

Abstract

Plasmodium infection results in clinical presentations that range from symptomatic to severe malaria, resulting in about 500,000 deaths annually worldwide. Artemisinin-based Combination Therapies (ACTs) has largely been responsible for the significant reduction in malaria-related mortality in tropical and sub-tropical regions. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterized by delayed parasitic clearance and high rate of recrudescence. In order to evaluate the synergistic effect of probiotics and antimalarial drug, in the treatment of malaria, the combination of artemether-lumefantrine and arthrospira platenis was administered to malaria patients and the gut microbiota and malaria parasite burden assessed during seven days follow-up. Of 313 subjects aged 2 to 18 years screened for malaria parasites, 75 participants were eligible to participate in this study. These participants were randomized and assigned to 3 groups to receive either the combination of Artemether-Lumefantrine and Arthrospira platensis (AL + AP), n = 25), designated as malaria positive group1 or Artemether-Lumefantrine (AL, n = 25), labeled malaria positive group 2 or to receive no antimalarial drug for malaria negative participants (n = 25, group 3). Fecal samples were collected on day 0 pre-treatment from all study participants and days 3 and 7 post-treatment from malaria positive patients for culture analysis and identification of gut microbiota communities. There was a significant change in the number of bacteria communities among treatment groups on days 3 and 7 post-treatment. Results from fecal sample culture analysis showed that E. coli was relatively abundant on day 3 (9 × 104 CFU/ml) and day 7 (9 × 104 CFU/g) as compared to day 0 (7 × 104 CFU/ml), Klebsiella was relatively abundant on day 3 (6 × 104 CFU/g) and day 7 (6 × 104 CFU/g) as compared to day 0 (5 × 104 CFU/ml), Pseudomonas was relatively abundant on day 3 (5 × 104 CFU/g) as compared to day 0 (4 × 104 CFU/ml) and day 7 (4 × 104 CFU/ml), Enterococci faecalis was relatively abundant on day 0 (5 × 104 CFU/ml) as compared to day 3 (3 × 104 CFU/ml) and day 7 (4 × 104 CFU/ml). In all treatment groups, the results showed that administration of arthemether-lumefantrine and Arthrospira to malaria positive subjects had a significant change on gut bacteria community on day 3 and day 7 post-treatment. In addition, malaria infected patients administered clinically relevant doses of artemether-lumefantrine and Arthrospira platensis had a significantly lower average parasitaemia on day 1 and day 2 as compared to malaria infected patients administered artemether-lumefantrine only. Therefore, the combination of artemether-lumefantrine and Arthrospira platensis in the treatment of malaria modifies the gut bacteria community which intend modulates malaria severity rapidly than artemether-lumefantrine alone. Collectively, these results identify the treatment of malaria with artemether-lumefantrine and Arthrospira platensis as potential treatment to decrease parasite burden.

FullText HTML FullText PDF DOI: 10.37871/jbres1715


Certificate of Publication




Copyright

© 2023 Awah-Nanzdum AJ, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Awah-Nanzdum AJ, Metoh TN, Mbifung MK, Fru CT, Djouosseu AC, Yensii NG, Bongjo NB, Ngo-Matip M, Mbofung CM. Inter-Relationship between Malaria, Probiotic Food Intake and Gut Microbiota Status among Malaria Patients. 2023 Apr 04; 4(4): 600-609. doi: 10.37871/jbres1715, Article ID: JBRES1715, Available at: https://www.jelsciences.com/articles/jbres1715.pdf


Subject area(s)

References


  1. World malaria report 2022. World Health Organization. 2022.
  2. World malaria report 2020: 20 years of global progress and challenges. World Health Organization. 2020.
  3. Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, Ekobo AS, Wondji CS. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors. 2019 Oct 26;12(1):501. doi: 10.1186/s13071-019-3753-8. PMID: 31655608; PMCID: PMC6815446.
  4. Metoh TN, Somo-Moyou R, Fon PG, Tambo E, Jun-Hu C, Zhou XN. Efficacy and safety assessment of three artemisinin-based combination therapy (acts) in the treatment of P. falciparum malaria in Cameroon. J Infect Dis Epidemiol. 2021;7:242. doi: 10.23937/2474-3658/1510242.
  5. Guidelines for the treatment of malaria. 3rd edition. Geneva: World Health Organization; 2015.
  6. Bloland Peter B & World Health Organization. Drug resistance in malaria/Peter B. Bloland. Anti-Infective Drug Resistance Surveillance and Containment Team. 2021.
  7. Taniguchi T, Miyauchi E, Nakamura S, Hirai M, Suzue K, Imai T, Nomura T, Handa T, Okada H, Shimokawa C, Onishi R, Olia A, Hirata J, Tomita H, Ohno H, Horii T, Hisaeda H. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis. Sci Rep. 2015 Oct 27;5:15699. doi: 10.1038/srep15699. Erratum in: Sci Rep. 2016;6:17248. PMID: 26503461; PMCID: PMC4621605.
  8. Kokwaro G. Ongoing challenges in the management of malaria. Malar J. 2009 Oct 12;8 Suppl 1(Suppl 1):S2. doi: 10.1186/1475-2875-8-S1-S2. PMID: 19818169; PMCID: PMC2760237.
  9. Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol. 2018 Nov 29;9:2769. doi: 10.3389/fimmu.2018.02769. PMID: 30555463; PMCID: PMC6281765.
  10. Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, Miller LH, Barillas-Mury C, Pierce SK. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol. 2014;32:157-87. doi: 10.1146/annurev-immunol-032713-120220. PMID: 24655294; PMCID: PMC4075043.
  11. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013 Jun 27;498(7455):502-5. doi: 10.1038/nature12216. Epub 2013 Jun 5. PMID: 23739325; PMCID: PMC3870021.
  12. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013 Jul;14(7):685-90. doi: 10.1038/ni.2608. PMID: 23778796; PMCID: PMC4083503.
  13. Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, Regalado A, Cowan PJ, d'Apice AJ, Chong AS, Doumbo OK, Traore B, Crompton PD, Silveira H, Soares MP. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014 Dec 4;159(6):1277-89. doi: 10.1016/j.cell.2014.10.053. PMID: 25480293; PMCID: PMC4261137.
  14. de Jesus Raposo MF, de Morais AM, de Morais RM. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar Drugs. 2016 Jan 28;14(2):27. doi: 10.3390/md14020027. PMID: 26828501; PMCID: PMC4771980.
  15. Khan Z, Bhadouria P, Bisen PS. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol. 2005 Oct;6(5):373-9. doi: 10.2174/138920105774370607. PMID: 16248810.
  16. Ngo-Matip ME, Pieme CA, Azabji-Kenfack M, Moukette BM, Korosky E, Stefanini P, Ngogang JY, Mbofung CM. Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial. Nutr J. 2015 Jul 21;14:70. doi: 10.1186/s12937-015-0058-4. PMID: 26195001; PMCID: PMC4508814.
  17. Metoh TN, Siberedi RKA, Pieme CA. Evaluating the effects of spirulina (Arthrospira platensis) on artemether/lumefantrine (coartem)-induced oxidative stress in wistar rats. International Journal of Tropical Medicine. 2022;17:1-9. doi: 10.36478/ijtmed.2022.1.9.
  18. Yusuf MS, Hassan MA, Abdel-Daim MM, Nabtiti AS, Ahmed AM, Moawed SA, El-Sayed AK, Cui H. Value added by Spirulina platensis in two different diets on growth performance, gut microbiota, and meat quality of Japanese quails. Vet World. 2016 Nov;9(11):1287-1293. doi: 10.14202/vetworld.2016.1287-1293. Epub 2016 Nov 23. PMID: 27956783; PMCID: PMC5146312.
  19. Neyrinck AM, Taminiau B, Walgrave H, Daube G, Cani PD, Bindels LB, Delzenne NM. Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota? Nutrients. 2017 Jun 20;9(6):633. doi: 10.3390/nu9060633. PMID: 28632181; PMCID: PMC5490612.
  20. Rasmussen HE, Martínez I, Lee JY, Walter J. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae. J Appl Microbiol. 2009 Oct;107(4):1108-18. doi: 10.1111/j.1365-2672.2009.04288.x. Epub 2009 Mar 30. PMID: 19486425.
  21. Neba AS. Modern geography of the republic of Cameroon. 2nd ed. Camden: NJ Neba Pub; 1987.
  22. AchoChi. Human interference and environmental instability: Addressing the environmental consequences of rapid urban growth in Bamenda, Cameroon. Environment and Urbanization. 1998. doi: 10.1177/095624789801000206.
  23. World health statistics 2009. World Health Organization. 2022:149.
  24. Kishoyian G, Njagi ENM, Orinda GO, Kimani FT, Thiongo K, Matoke-Muhia D. Efficacy of artemisinin-lumefantrine for treatment of uncomplicated malaria after more than a decade of its use in Kenya. Epidemiol Infect. 2021 Jan 5;149:e27. doi: 10.1017/S0950268820003167. PMID: 33397548; PMCID: PMC8057502.
  25. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, Balakrishnan D, Show PL. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered. 2022 Jun;13(6):14681-14718. doi: 10.1080/21655979.2022.2100863. PMID: 35946342; PMCID: PMC9373759.
  26. Leal-Esteban LC, Renata Nogueira C, Veauvy M, Mascarenhas B, Mhatre M, Menon S, Graz B, von der Weid D. Spirulina supplementation: A double-blind, randomized, comparative study in young anemic Indian women. Clinical Epidemiology and Global Health. 2021;12:100884. doi: 10.1016/j.cegh.2021.100884.
  27. Azabji-Kenfack M, Dikosso SE, Loni EG, Onana EA, Sobngwi E, Gbaguidi E, Kana AL, Nguefack-Tsague G, Von der Weid D, Njoya O, Ngogang J. Potential of Spirulina Platensis as a Nutritional Supplement in Malnourished HIV-Infected Adults in Sub-Saharan Africa: A Randomised, Single-Blind Study. Nutr Metab Insights. 2011 May 2;4:29-37. doi: 10.4137/NMI.S5862. PMID: 23946659; PMCID: PMC3738485.
  28. Park HJ, Lee YJ, Ryu HK, Kim MH, Chung HW, Kim WY. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab. 2008;52(4):322-8. doi: 10.1159/000151486. Epub 2008 Aug 19. PMID: 18714150.
  29. Laman M, Moore BR, Benjamin J, Padapu N, Tarongka N, Siba P, Betuela I, Mueller I, Robinson LJ, Davis TM. Comparison of an assumed versus measured leucocyte count in parasite density calculations in Papua New Guinean children with uncomplicated malaria. Malar J. 2014 Apr 16;13:145. doi: 10.1186/1475-2875-13-145. PMID: 24739250; PMCID: PMC3991873.
  30. Sanders ER. Aseptic laboratory techniques: plating methods. J Vis Exp. 2012 May 11;(63):e3064. doi: 10.3791/3064. PMID: 22617405; PMCID: PMC4846335.
  31. Shimada M, Hirose Y, Shimizu K, Yamamoto DS, Hayakawa EH, Matsuoka H. Upper gastrointestinal pathophysiology due to mouse malaria Plasmodium berghei ANKA infection. Trop Med Health. 2019 Mar 4;47:18. doi: 10.1186/s41182-019-0146-9. PMID: 30872946; PMCID: PMC6399856.
  32. Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ. 2019 Jan 7;7:e6200. doi: 10.7717/peerj.6200. PMID: 30643702; PMCID: PMC6327884.
  33. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, Njenga J, Mwangi A, Kvalsvig J, Lacroix C, Zimmermann MB. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015 May;64(5):731-42. doi: 10.1136/gutjnl-2014-307720. Epub 2014 Aug 20. PMID: 25143342.
  34. Jason PM, Kristen LL, Mariana XB, Michael DG, Eric MV, Franziska F, Brian PB, Gregory TW, Mohamed MA, Rashaun P, Caitlin T, Brian MMA, Shirley L, Renée MT. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal salmonella during concurrent malaria parasite infection. Sci Rep. 2015;5: 14603. doi: 10.1038/srep14603.
  35. Goswami S, Bhakuni RS, Chinniah A, Pal A, Kar SK, Das PK. Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother. 2012 Sep;56(9):4594-607. doi: 10.1128/AAC.00407-12. Epub 2012 Jun 11. PMID: 22687518; PMCID: PMC3421870.
  36. Sisto F, Carradori S, D'Alessandro S, Santo N, Lattuada N, Haynes RK, Taramelli D, Grande R. In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens. 2022 Jun 29;11(7):740. doi: 10.3390/pathogens11070740. PMID: 35889986; PMCID: PMC9324866.
  37. Bamgbose T, Anvikar AR, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Cabezas-Cruz A, de la Fuente J. Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics Antimicrob Proteins. 2021 Oct;13(5):1254-1266. doi: 10.1007/s12602-021-09780-w. Epub 2021 Apr 1. PMID: 33791994; PMCID: PMC8012070.
  38. Dahiya D, Nigam PS. The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-Inflammation and Colon-Cancer. Microorganisms. 2022 Mar 20;10(3):665. doi: 10.3390/microorganisms10030665. PMID: 35336240; PMCID: PMC8954736.
  39. Vamanu E. Polyphenolic Nutraceuticals to Combat Oxidative Stress Through Microbiota Modulation. Front Pharmacol. 2019 May 3;10:492. doi: 10.3389/fphar.2019.00492. PMID: 31130865; PMCID: PMC6509743.
  40. Fan ZG, Li X, Fu HY, Zhou LM, Gong FL, Fang M. Gut Microbiota Reconstruction Following Host Infection with Blood-stage Plasmodium berghei ANKA Strain in a Murine Model. Curr Med Sci. 2019 Dec;39(6):883-889. doi: 10.1007/s11596-019-2119-y. Epub 2019 Dec 16. PMID: 31845218.
  41. Villarino NF, LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, Gribble JL, Campagna SR, Wilhelm SW, Schmidt NW. Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2235-40. doi: 10.1073/pnas.1504887113. Epub 2016 Feb 8. PMID: 26858424; PMCID: PMC4776451.
  42. Morffy Smith CD, Gong M, Andrew AK, Russ BN, Ge Y, Zadeh M, Cooper CA, Mohamadzadeh M, Moore JM. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome. EBioMedicine. 2019 Jun;44:639-655. doi: 10.1016/j.ebiom.2019.05.052. Epub 2019 May 31. PMID: 31160271; PMCID: PMC6606560.
  43. Wulandari DA, Sidhartha E, Setyaningsih I, Marbun JM, Syafruddin D, Asih PBS. Evaluation of antiplasmodial properties of a cyanobacterium, Spirulina platensis and its mechanism of action. Nat Prod Res. 2018 Sep;32(17):2067-2070. doi: 10.1080/14786419.2017.1360880. Epub 2017 Aug 2. PMID: 28768428.
  44. Yooseph S, Kirkness EF, Tran TM, Harkins DM, Jones MB, Torralba MG, O'Connell E, Nutman TB, Doumbo S, Doumbo OK, Traore B, Crompton PD, Nelson KE. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics. 2015 Aug 22;16(1):631. doi: 10.1186/s12864-015-1819-3. PMID: 26296559; PMCID: PMC4546150.
  45. Bordon Y. Microbiome: Gut bacteria cross malaria. Nat Rev Microbiol. 2015 Feb;13(2):65. doi: 10.1038/nrmicro3419. Epub 2014 Dec 22. PMID: 25534807.
  46. Spisni E, Turroni S, Alvisi P, Spigarelli R, Azzinnari D, Ayala D, Imbesi V, Valerii MC. Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Front Pharmacol. 2022 Mar 18;13:841782. doi: 10.3389/fphar.2022.841782. PMID: 35370685; PMCID: PMC8971809.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search