Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Microbial Community Associated with Ground waters Discharge in Transylvania (Romania) and Balaton Highland (Hungary)

Biology Group    Start Submission

Marwene Toumi*, Istvan Mathe, Adam Toth, Nora Sztrada, Rozsa Farkas, Laura Jurecska and Erika Tu00f3th

Volume4-Issue3
Dates: Received: 2023-03-05 | Accepted: 2023-03-19 | Published: 2023-03-22
Pages: 485-501

Abstract

In the present study, water samples from 8 sites known as: Taploca, Nagy-borvíz, Piricske (located in Romania) and Szent Jakab, Kiskút, Kossuth Lajos, Polányi kút and Berzsenyi (located in Balaton highland in Hungary) and characterized with low nutrient content, were studied using cultivation independent methods. Diversity indices and cell counts were determined to assess the species richness in relation to the cell counts within the samples. Next generation sequencing was used to reveal the existing microbial community, and taxon specific PCR was used to detect the presence of some species with hygienic. 18 bacterial phyla above a ratio of 2% were identified in addition to 13 archaeal phyla using amplicon sequencing.

FullText HTML FullText PDF DOI: 10.37871/jbres1701


Certificate of Publication




Copyright

© 2023 Toumi M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Toumi M, Máthé I, Tóth Á, Sztráda N, Farkas R, Jurecska L, Tóth E. Microbial Community Associated with Ground waters Discharge in Transylvania (Romania) and Balaton Highland (Hungary). 2023 Mar 22; 4(3): 485-501. doi: 10.37871/jbres1701, Article ID: JBRES1701, Available at: https://www.jelsciences.com/articles/jbres1701.pdf


Subject area(s)

References


  1. Felipe-Sotelo M, Henshall-Bell ER, Evans NDM, Read D. Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis. J Food Compos Anal. 2015;39(3):33-42. doi: 10.1016/j.jfca.2014.10.014.
  2. Casanovas-Massana A, Blanch AR. Diversity of the heterotrophic microbial populations for distinguishing natural mineral waters. Int J Food Microbiol. 2012 Feb 1;153(1-2):38-44. doi: 10.1016/j.ijfoodmicro.2011.10.012. Epub 2011 Oct 29. PMID: 22094180.
  3. Máthé I, Táncsics A, György E, Pohner Z, Vladár P, Székely AJ, Márialigeti K. Investigation of mineral water springs of Miercurea Ciuc (Csíkszereda) region (Romania) with cultivation-dependent microbiological methods. Acta Microbiol Immunol Hung. 2010 Jun;57(2):109-22. doi: 10.1556/AMicr.57.2010.2.4. PMID: 20587384.
  4. Kis BM, Baciu C. The mineral waters from the Eastern Carpathians: A chemical review. Journal of Environmental Research and Protection. 2014;59.
  5. KL, Budai Tamás, Császár Géza, Csillag Gábor, Dudko Antonyina, Majoros G. A balaton-felvidék földtana. Angew Chemie Int Ed. 1999;6(11):951-952.
  6. Tóth A, Mádl-Szőnyi J. Scale-dependent evaluation of an unconfined carbonate system- practical application, consequences and significance. 2015. p.199-213.
  7. Rodger BB, Andrew DE, Eugene WR, Laura Bridgewater. American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 2017.
  8. Zsuzsa K, Judit M, Katalin B, Balázs V, Márton P, Károly M, Erika T. Critical point analysis and biocide treatment in a microbiologically contaminated water purification system of a power plant. SN Applied Sciences. 2019;1(8):1-12. doi: 10.1007/s42452-019-0740-9.
  9. Abbaszade G, Szabó A, Vajna B, Farkas R, Szabó C, Tóth E. Whole genome sequence analysis of Cupriavidus campinensis S14E4C, a heavy metal resistant bacterium. Mol Biol Rep. 2020 May;47(5):3973-3985. doi: 10.1007/s11033-020-05490-8. Epub 2020 May 13. PMID: 32406019; PMCID: PMC7239810.
  10. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011 Oct;5(10):1571-9. doi: 10.1038/ismej.2011.41. Epub 2011 Apr 7. PMID: 21472016; PMCID: PMC3176514.
  11. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013 Jan 7;41(1):e1. doi: 10.1093/nar/gks808. Epub 2012 Aug 28. PMID: 22933715; PMCID: PMC3592464.
  12. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2. PMID: 19801464; PMCID: PMC2786419.
  13. Klára B, János B, István M, Gyöngyvér M, Tamás F, Attila S, Csaba F, Csilla A, Robert W B, Oswald JS, Adalbert B. Linking intraspecific variation in plant chemical defence with arthropod and soil bacterial community structure and N allocation. Plant Soil. 2019;444(1-2):383-397. doi: 10.1007/s11104-019-04284-7.
  14. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011 Aug 15;27(16):2194-200. doi: 10.1093/bioinformatics/btr381. Epub 2011 Jun 23. PMID: 21700674; PMCID: PMC3150044.
  15. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010 Jan;12(1):118-23. doi: 10.1111/j.1462-2920.2009.02051.x. Epub 2009 Aug 27. PMID: 19725865.
  16. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. doi: 10.1093/nar/gks1219. Epub 2012 Nov 28. PMID: 23193283; PMCID: PMC3531112.
  17. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):249-266. doi: 10.1099/ijs.0.016949-0. Epub 2009 Aug 21. PMID: 19700448.
  18. Bej AK, Steffan RJ, DiCesare J, Haff L, Atlas RM. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl Environ Microbiol. 1990;56(2):307-314. doi: 10.1128/aem.56.2.307-314.1990.
  19. Huang LY, Chen TL, Lu PL, Tsai CA, Cho WL, Chang FY, Fung CP, Siu LK. Dissemination of multidrug-resistant, class 1 integron-carrying Acinetobacter baumannii isolates in Taiwan. Clin Microbiol Infect. 2008 Nov;14(11):1010-9. doi: 10.1111/j.1469-0691.2008.02077.x. Erratum in: Clin Microbiol Infect. 2009 Mar;15(3):296. PMID: 19040472.
  20. Cloud JL, Carroll KC, Pixton P, Erali M, Hillyard DR. Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation. J Clin Microbiol. 2000 May;38(5):1709-12. doi: 10.1128/JCM.38.5.1709-1712.2000. PMID: 10790085; PMCID: PMC86568.
  21. Gallo SW, Ramos PL, Ferreira CA, Oliveira SD. A specific polymerase chain reaction method to identify Stenotrophomonas maltophilia. Mem Inst Oswaldo Cruz. 2013 May;108(3):390–1. doi: 10.1590/S0074-02762013000300020. PMID: 23778655; PMCID: PMC4005581.
  22. Fiume L, Bucci Sabattini MA, Poda G. Detection of Legionella pneumophila in water samples by species-specific real-time and nested PCR assays. Lett Appl Microbiol. 2005;41(6):470-5. doi: 10.1111/j.1472-765X.2005.01779.x. Erratum in: Lett Appl Microbiol. 2006 Mar;42(3):304. Bucca Sabattini, MA [corrected to Bucci Sabattini, MA]. PMID: 16305672.
  23. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods. 2007;70(1):20-29. doi: 10.1016/j.mimet.2007.03.008.
  24. Trung NT, Hien TT, Huyen TT, Quyen DT, Binh MT, Hoan PQ, Meyer CG, Velavan TP, Song le H. Simple multiplex PCR assays to detect common pathogens and associated genes encoding for acquired extended spectrum betalactamases (ESBL) or carbapenemases from surgical site specimens in Vietnam. Ann Clin Microbiol Antimicrob. 2015 Apr 12;14:23. doi: 10.1186/s12941-015-0079-z. PMID: 25890291; PMCID: PMC4399146.
  25. Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 2011 Oct 27;4:453. doi: 10.1186/1756-0500-4-453. PMID: 22032892; PMCID: PMC3212975.
  26. Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to Basics--The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLoS One. 2015 Jul 16;10(7):e0132783. doi: 10.1371/journal.pone.0132783. PMID: 26182345; PMCID: PMC4504704.
  27. Oksanen AJ. Vegan. Encyclopedia of Food and Agricultural Ethics. In: Kaplan DM, editor. 2019. p.2395-2396. doi: 10.1007/978-94-024-1179-9_301576.
  28. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF. Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods. 2011 Jul;86(1):42-51. doi: 10.1016/j.mimet.2011.03.014. Epub 2011 Mar 30. PMID: 21457733.
  29. Kuznetsov SI, Dubinina GA, Lapteva NA. Biology of oligotrophic bacteria. Annu Rev Microbiol. 1979;33:377-87. doi: 10.1146/annurev.mi.33.100179.002113. PMID: 386927.
  30. Ho A, Di Lonardo DP, Bodelier PL. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017 Mar 1;93(3). doi: 10.1093/femsec/fix006. PMID: 28115400.
  31. Lopez-Fernandez M, Åström M, Bertilsson S, Dopson M. Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers. Front Microbiol. 2018 Nov 27;9:2880. doi: 10.3389/fmicb.2018.02880. PMID: 30538690; PMCID: PMC6277548.
  32. Gayner NJ. River bank inducement influence on a shallow groundwater microbial community and its effects on aquifer reactivity. 2018.
  33. Marwene T, Gorkhmaz A, Yousra S, Rózsa F, Éva Á, Laura J, Erika T. Cultivation and molecular studies to reveal the microbial communities of groundwaters discharge located in Hungary. Water. 2021;13:11. doi: 10.3390/w13111533.
  34. Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, Liu Y, Banfield JF, Gu Ji D. Insights into the ecology, evolution, and metabolism of the widespread woesearchaeotal lineages. Microbiome. 2018;6(1):1-16. doi: 10.1186/s40168-018-0488-2.
  35. Lau MCY, Kieft TL, Kuloyo O, Linage-Alvarez B, van Heerden E, Lindsay MR, Magnabosco C, Wang W, Wiggins JB, Guo L, Perlman DH, Kyin S, Shwe HH, Harris RL, Oh Y, Yi MJ, Purtschert R, Slater GF, Wei S, Li L, Sherwood LB, Onstott TC, Ono S. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci. 2016;113(49):E7927-E7936. doi: 10.1073/pnas.1612244113.
  36. Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018 Oct;16(10):629-645. doi: 10.1038/s41579-018-0076-2. PMID: 30181663.
  37. Hu W, Pan J, Wang B, Guo J, Li M, Xu M. Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales). Environ Microbiol. 2021 Jul;23(7):3695-3709. doi: 10.1111/1462-2920.15349. Epub 2020 Dec 15. PMID: 33295091.
  38. Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu JD, Li M. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J. 2019 Apr;13(4):885-901. doi: 10.1038/s41396-018-0321-8. Epub 2018 Dec 4. PMID: 30514872; PMCID: PMC6461988.
  39. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5756-60. doi: 10.1073/pnas.1118179109. Epub 2012 Mar 26. PMID: 22451938; PMCID: PMC3326507.
  40. Shuming MCJ, Jinhui L, Bin L, Ran Y, Shiqing N, Zufan Z, Jianping L, Qiong J, Bing Y. Impacts of crenarchaeota and halobacterota on sulfate reduction in the subtropical mangrove ecosystem as revealed by smdb analysis. bioRxiv. 2020;34(5):155-163. doi: 10.1101/2020.08.16.252635.
  41. Rios-Del Toro EE, Valenzuela EI, Ramírez JE, López-Lozano NE, Cervantes FJ. Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environ Sci Technol Lett. 2018;5(9):571-577. doi: 10.1021/acs.estlett.8b00330.
  42. Kerou M, Schleper C. Nitrososphaeraceae. Wiley Online Library. 2016. p.1-2. doi: 10.1002/9781118960608.fbm00265.
  43. Prosser JI, Nicol GW. Candidatus Nitrosotaleaceae. Bergey’s manual of systematics of archaea and bacteria. 2016;1-1. doi: 10.1002/9781118960608.fbm00264.
  44. Isobe K, Ikutani J, Fang YT, Yoh M, Mo JM, Suwa Y, Yoshida M, Senoo K, Otsuka S, Koba K. Highly abundant acidophilic ammonia-oxidizing archaea causes high rates of nitrification and nitrate leaching in nitrogen-saturated forest soils. Soil Biol Biochem. 2018;122:220-227. doi: 10.1016/j.soilbio.2018.04.021.
  45. Rosenberg E. The prokaryotes: Alphaproteobacteria and betaproteobacteria. 2013;1-1012. doi: 10.1007/978-3-642-30197-1.
  46. Chen M, Conroy JL, Sanford RA, Chee-Sanford JC, Connor LM, Interpreting lacustrine bulk sediment δ15N values using metagenomics in a tropical hypersaline lake system. J Paleolimnol. 2021;65(1):151-168. doi: 10.1007/s10933-020-00157-7.
  47. Herrmann M, Wegner CE, Taubert M, Geesink P, Lehmann K, Yan L, Lehmann R, Totsche KU, Küsel K. Predominance of Cand. Patescibacteria in Groundwater Is Caused by Their Preferential Mobilization From Soils and Flourishing Under Oligotrophic Conditions. Front Microbiol. 2019 Jun 20;10:1407. doi: 10.3389/fmicb.2019.01407. PMID: 31281301; PMCID: PMC6596338.
  48. Miyoshi T, Iwatsuki T, Naganuma T. Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol. 2005 Feb;71(2):1084-8. doi: 10.1128/AEM.71.2.1084-1088.2005. PMID: 15691970; PMCID: PMC546738.
  49. Luef B, Frischkorn KR, Wrighton KC, Holman HY, Birarda G, Thomas BC, Singh A, Williams KH, Siegerist CE, Tringe SG, Downing KH, Comolli LR, Banfield JF. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun. 2015 Feb 27;6:6372. doi: 10.1038/ncomms7372. PMID: 25721682.
  50. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, Carlson CA, Smith RD, Giovanonni SJ. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009 Jan;3(1):93-105. doi: 10.1038/ismej.2008.83. Epub 2008 Sep 4. PMID: 18769456.
  51. Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014 Aug;8(8):1553-65. doi: 10.1038/ismej.2014.60. Epub 2014 Apr 17. PMID: 24739623; PMCID: PMC4817614.
  52. Alejandro RG, Julia K N, Maliheh M, Moritz B, Frederik S, Tanja W, Sarahi LG. A genomic perspective on genome size distribution across Earth’s microbiomes reveals a tendency to gene loss. bioRxiv. 2021;1-25. doi: 10.1101/2021.01.18.427069.
  53. Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SC, Novak PJ. Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol. 2012 Jan;78(2):393-401. doi: 10.1128/AEM.06510-11. Epub 2011 Nov 18. PMID: 22101035; PMCID: PMC3255752.
  54. Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M, Viehweger B, Hinrichs KU, Thomas BC, Meck S, Auerbach AK, Heise M, Schintlmeister A, Schmid M, Wagner M, Gribaldo S, Banfield JF, Moissl-Eichinger C. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun. 2014 Nov 26;5:5497. doi: 10.1038/ncomms6497. PMID: 25425419.
  55. Bräuer S, Cadillo-Quiroz H, Kyrpides N, Woyke T, Goodwin L, Detter C, Podell S, Yavitt JB, Zinder SH. Genome of Methanoregula boonei 6A8 reveals adaptations to oligotrophic peatland environments. Microbiology (Reading). 2015 Aug;161(8):1572-1581. doi: 10.1099/mic.0.000117. Epub 2015 May 21. PMID: 25998264.
  56. Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol. 1999 Jan;171(2):107-14. doi: 10.1007/s002030050685. PMID: 9914307.
  57. Simon J, Kroneck PM. Microbial sulfite respiration. Adv Microb Physiol. 2013;62:45-117. doi: 10.1016/B978-0-12-410515-7.00002-0. PMID: 23481335.
  58. Umezawa K, Kojima H, Kato Y, Fukui M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst Appl Microbiol. 2020 Sep;43(5):126110. doi: 10.1016/j.syapm.2020.126110. Epub 2020 Jul 2. PMID: 32847785.
  59. Frank YA, Kadnikov VV, Lukina AP, Banks D, Beletsky AV, Mardanov AV, Sen'kina EI, Avakyan MR, Karnachuk OV, Ravin NV. Characterization and Genome Analysis of the First Facultatively Alkaliphilic Thermodesulfovibrio Isolated from the Deep Terrestrial Subsurface. Front Microbiol. 2016 Dec 19;7:2000. doi: 10.3389/fmicb.2016.02000. PMID: 28066337; PMCID: PMC5165239.
  60. Okon Y. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 1985;3(9):223-228. doi: 10.1016/0167-7799(85)90012-5.
  61. Saito A, Mitsui H, Hattori R, Minamisawa K, Hattori T. Slow-growing and oligotrophic soil bacteria phylogenetically close to bradyrhizobium japonicum. FEMS Microbiol Ecol. 1998;25(3):277-286. doi: 10.1016/S0168-6496(98)00009-9.
  62. Chrzanowski TH, Kyle M, Elser JJ, Sterner R. Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquat Microb Ecol. 1996;11(2):119-125. doi: 10.3354/ame011119.
  63. Wang J, Wang C, Li J, Bai P, Li Q, Shen M, Li R, Li T, Zhao J. Comparative Genomics of Degradative Novosphingobium Strains With Special Reference to Microcystin-Degrading Novosphingobium sp. THN1. Front Microbiol. 2018 Sep 25;9:2238. doi: 10.3389/fmicb.2018.02238. PMID: 30319567; PMCID: PMC6167471.
  64. White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol. 1996 Jun;7(3):301-6. doi: 10.1016/s0958-1669(96)80034-6. PMID: 8785434.
  65. Verma H, Dhingra GG, Sharma M, Gupta V, Negi RK, Singh Y, Lal R. Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics. 2020 Mar;112(2):1956-1969. doi: 10.1016/j.ygeno.2019.11.008. Epub 2019 Nov 15. PMID: 31740292.
  66. Park M, Jung I, Song J, Cho JC. Sphingorhabdus lacus sp. nov. and Sphingorhabdus profundilacus sp. nov., isolated from freshwater environments. Int J Syst Evol Microbiol. 2020 May;70(5):3202-3209. doi: 10.1099/ijsem.0.004155. PMID: 32320377.
  67. Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol. 2013 Sep 12;4:254. doi: 10.3389/fmicb.2013.00254. PMID: 24062729; PMCID: PMC3770913.
  68. Atashgahi S, Aydin R, Dimitrov MR, Sipkema D, Hamonts K, Lahti L, Maphosa F, Kruse T, Saccenti E, Springael D, Dejonghe W, Smidt H. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep. 2015 Nov 26;5:17284. doi: 10.1038/srep17284. PMID: 26607034; PMCID: PMC4660315.
  69. Humphreys WF. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol J. 2009;17(1):5-21. doi: 10.1007/s10040-008-0349-3.
  70. Edberg SC, LeClerc H, Robertson J. Natural protection of spring and well drinking water against surface microbial contamination. II. Indicators and monitoring parameters for parasites. Crit Rev Microbiol. 1997;23(2):179-206. doi: 10.3109/10408419709115135. PMID: 9226113.
  71. Bekins B. Preface-groundwater and microbial processes. Hydrogeol J. 2000;8(1):2-3. doi: 10.1007/s100400050002.
  72. Fazi S, Amalfitano S, Venturi S, Pacini N, Vazquez E, Olaka LA, Tassi F, Crognale S, Herzsprung P, Lechtenfeld OJ, Cabassi J, Capecchiacci F, Rossetti S, Yakimov MM, Vaselli O, Harper DM, Butturini A. High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water. Commun Biol. 2021 Jul 7;4(1):845. doi: 10.1038/s42003-021-02365-x. PMID: 34234272; PMCID: PMC8263762.
  73. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28. Erratum in: Nature. 2013 Sep 26;501(7468):578. PMID: 23892779.
  74. Timmers PH, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJ, Plugge CM. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J. 2016 Jun;10(6):1400-12. doi: 10.1038/ismej.2015.213. Epub 2015 Dec 4. PMID: 26636551; PMCID: PMC5029187.
  75. Gülay A, Çekiç Y, Musovic S, Albrechtsen HJ, Smets BF. Diversity of Iron Oxidizers in Groundwater-Fed Rapid Sand Filters: Evidence of Fe(II)-Dependent Growth by Curvibacter and Undibacterium spp. Front Microbiol. 2018 Dec 3;9:2808. doi: 10.3389/fmicb.2018.02808. PMID: 30559723; PMCID: PMC6287000.
  76. Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol. 2011 Aug 15;77(16):5697-706. doi: 10.1128/AEM.00579-11. Epub 2011 Jun 24. PMID: 21705522; PMCID: PMC3165245.
  77. Willems A, Gillis M. Comamonadaceae. Bergey’s Man Syst Archaea Bact. 2015;1-6. doi: 10.1002/9781118960608.fbm00182.
  78. Devos L, Boon N, Verstraete W. Legionella pneumophila in the environment: The occurrence of a fastidious bacterium in oligotrophic conditions. Rev Environ Sci Biotechnol. 2005;4(1/2):61-74. doi: 10.1007/s11157-004-8174-1.
  79. Devos L, Clymans K, Boon N, Verstraete W. Evaluation of nested PCR assays for the detection of Legionella pneumophila in a wide range of aquatic samples. J Appl Microbiol. 2005;99(4):916-25. doi: 10.1111/j.1365-2672.2005.02668.x. PMID: 16162244.
  80. Felföldi T, Heéger Z, Vargha M, Márialigeti K. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin Microbiol Infect. 2010 Jan;16(1):89-92. doi: 10.1111/j.1469-0691.2009.02795.x. PMID: 19519854.
  81. Bifulco JM, Shirey JJ, Bissonnette GK. Detection of Acinetobacter spp. in rural drinking water supplies. Appl Environ Microbiol. 1989 Sep;55(9):2214-9. doi: 10.1128/aem.55.9.2214-2219.1989. PMID: 2529816; PMCID: PMC203058.
  82. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012 Jan;25(1):2-41. doi: 10.1128/CMR.00019-11. PMID: 22232370; PMCID: PMC3255966.
  83. Chakraborty S, Kumar RN. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India. Environ Monit Assess. 2016 Jun;188(6):335. doi: 10.1007/s10661-016-5336-x. Epub 2016 May 7. PMID: 27155859.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search