Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Degradation of Biodegradable Microplastics under Artificially Controlled Aging Conditions with UV Radiation

Environmental Sciences    Start Submission

Lin Zhang, Keyu Zhu, Songwei Yang, Baoquan Huang, Changlin Cao* and Qingrong Qian*

Dates: Received: 2023-03-16 | Accepted: 2023-03-19 | Published: 2023-03-20
Pages: 463-471


Due to the extensive use and improper recycling of traditional plastics, more and more policies have been issued to manage and restrict the use of traditional plastics. Therefore, Biodegradable Plastics (BPs), a substitute of traditional plastics, are widely used in daily life. However, it cannot reach the expected degradation effect in the natural environment, BPs may produce micro-plastics faster than traditional plastics called Biodegradable Microplastics (BMPs). In order to explore the degradation of BMPs, we designed a degradation experiment of BMPs under Ultraviolet (UV) radiation for 64 days. The results showed that the surface of BMPs gradually became rough with the aging time. And the both slight increase of O/C ratio and CI (carbonyl index) value of them indicated that they were oxidized under UV radiation. In addition, the crystal behaviors and the thermal stability of BMPs showed no obvious changes before and after aging. Our findings demonstrated that BMPs were less sensitive to UV radiation as compared with those of conventional plastics, giving evidence that it is necessary to increase regulation and constraints on their upstream production and subsequent disposal to achieve their environmental friendly purpose.

FullText HTML FullText PDF DOI: 10.37871/jbres1698

Certificate of Publication


© 2023 Zhang L, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Zhang L, Zhu K, Yang S, Huang B, Cao C, Qian Q. Degradation of Biodegradable Microplastics under Artifi cially Controlled Aging Conditions with UV Radiation. 2023 Mar 20; 4(3): 463-471. doi: 10.37871/jbres1698, Article ID: JBRES1698, Available at:

Subject area(s)


  1. Rongrong A, Chengguo L, Jun W, Puyou J. Recent advances in degradation of polymer plastics by insects inhabiting microorganisms. Polymers. 2023;15(5):1307. doi: 10.3390/polym15051307.
  2. Li J, Shan E, Zhao J, Teng J, Wang Q. The factors influencing the vertical transport of microplastics in marine environment: A review. Sci Total Environ. 2023 Apr 20;870:161893. doi: 10.1016/j.scitotenv.2023.161893. Epub 2023 Jan 31. PMID: 36731545.
  3. Alimba CG, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol. 2019 May;68:61-74. doi: 10.1016/j.etap.2019.03.001. Epub 2019 Mar 8. PMID: 30877952.
  4. Zhang C, Chen X, Wang J, Tan L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ Pollut. 2017 Jan;220(Pt B):1282-1288. doi: 10.1016/j.envpol.2016.11.005. Epub 2016 Nov 18. PMID: 27876228.
  5. Miao L, Yu Y, Adyel TM, Wang C, Liu Z, Liu S, Huang L, You G, Meng M, Qu H, Hou J. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J Hazard Mater. 2021 Feb 5;403:123577. doi: 10.1016/j.jhazmat.2020.123577. Epub 2020 Aug 2. PMID: 32795819.
  6. Seeley ME, Song B, Passie R, Hale RC. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat Commun. 2020 May 12;11(1):2372. doi: 10.1038/s41467-020-16235-3. PMID: 32398678; PMCID: PMC7217880.
  7. Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar Pollut Bull. 2022 Aug;181:113832. doi: 10.1016/j.marpolbul.2022.113832. Epub 2022 Jun 15. PMID: 35716489.
  8. Santos-Echeandía J, Rivera-Hernández JR, Rodrigues JP, Moltó V. Interaction of mercury with beached plastics with special attention to zonation, degradation status and polymer type. Mar Chem. 2020;222:103788. doi: 10.1016/j.marchem.2020.103788.
  9. Wang J, Li Y, Lu L, Zheng M, Zhang X, Tian H, Wang W, Ru S. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ Pollut. 2019;254. doi: 10.1016/j.envpol.2019.113024.
  10. Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull. 2019 Jun;143:193-203. doi: 10.1016/j.marpolbul.2019.04.030. Epub 2019 Apr 28. PMID: 31789155.
  11. Qin M, Chen C, Song B, Shen M, Cao W, Yang H, Zeng G, Gong J. A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? J Clean Prod. 2021;312. doi: 10.1016/j.jclepro.2021.127816.
  12. Rebelo R, Fernandes M, Fangueiro R. Biopolymers in medical implants: A brief review. Procedia Eng. 2017;200:236-243. doi: 10.1016/j.proeng.2017.07.034.
  13. Fan P, Yu H, Xi B, Tan W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? Environ Int. 2022 May;163:107244. doi: 10.1016/j.envint.2022.107244. Epub 2022 Apr 12. PMID: 35436719.
  14. Cao JS, Xu RZ, Luo JY, Feng Q, Fang F. Rapid quantification of intracellular polyhydroxyalkanoates via fluorescence techniques: A critical review. Bioresour Technol. 2022 Apr;350:126906. doi: 10.1016/j.biortech.2022.126906. Epub 2022 Feb 25. PMID: 35227918.
  15. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol. 2018 Jul;60(7):506-532. doi: 10.1007/s12033-018-0084-5. PMID: 29761314.
  16. Choe S, Kim Y, Won Y, Myung J. Bridging Three Gaps in Biodegradable Plastics: Misconceptions and Truths About Biodegradation. Front Chem. 2021 May 14;9:671750. doi: 10.3389/fchem.2021.671750. PMID: 34055740; PMCID: PMC8160376.
  17. Abdelmoez W, Dahab I, Ragab EM, Abdelsalam OA, Mustafa A. Bio- and oxo-degradable plastics: Insights on facts and challenges. Polym Adv Technol. 2021;32(5):1981-1996. doi: 10.1002/pat.5253.
  18. Avérous L. 9-synthesis, properties, environmental and biomedical applications of polylactic acid [M]//EBNESAJJAD S. Handbook of Biopolymers and Biodegradable Plastics. Boston. William Andrew Publishing; 2013. p.171-188.
  19. Gao R, Liu R, Sun C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J Hazard Mater. 2022 Jun 5;431:128617. doi: 10.1016/j.jhazmat.2022.128617. Epub 2022 Mar 7. PMID: 35359103.
  20. Karamanlioglu M, Preziosi R, Robson GD. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym Degrad Stab. 2017;137:122-30. doi: 10.1016/j.polymdegradstab.2017.01.009.
  21. Buffum K, Pacheco H, Shivkumar S. Environmental effects on the properties of biopolymer service-ware products. Polym Plast Technol Eng. 2015;54(5):506-14. doi: 10.1080/03602559.2014.935410.
  22. Billingham NC, Wiles DM, Cermak BE, Gho JG, Tung JF. Controlled lifetime environmentally degradable plastics based on conventional polymers. Addcon World. Basel (RAPRA Technology, 2000). 2000.
  23. Al Hosni AS, Pittman JK, Robson GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Manag. 2019 Sep;97:105-114. doi: 10.1016/j.wasman.2019.07.042. Epub 2019 Aug 6. PMID: 31447017.
  24. Restrepo-Florez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene: A review. Int Biodeterior Biodegradation. 2014;88:83-90. doi: 10.1016/j.ibiod.2013.12.014.
  25. Tong H, Zhong X, Duan Z, Yi X, Cheng F, Xu W, Yang X. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity. Sci Total Environ. 2022;833:155275. doi: 10.1016/j.scitotenv.2022.155275.
  26. O'Brine T, Thompson RC. Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull. 2010 Dec;60(12):2279-83. doi: 10.1016/j.marpolbul.2010.08.005. Epub 2010 Oct 18. PMID: 20961585.
  27. Wang C, Xian Z, Jin X, Liang S, Chen Z, Pan B, Wu B, Ok YS, Gu C. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Res. 2020 Sep 15;183:116082. doi: 10.1016/j.watres.2020.116082. Epub 2020 Jun 18. PMID: 32668353.
  28. Han Y, Shi J, Mao L, Wang Z, Zhang L. Improvement of compatibility and mechanical performances of pla/pbat composites with epoxidized soybean oil as compatibilizer. Ind Eng Chem Res. 2020;59(50):21779-90. doi: 10.1021/acs.iecr.0c04285.
  29. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR. Biodegradation in soil of pla/pbat blends compatibilized with chain extender. J Polym Environ. 2017;26(1):330-41. doi: 10.1007/s10924-017-0951-3.
  30. Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Meihuma, Lin S, Xiong H. Thermal properties and crystallization behavior of thermoplastic starch/poly(ɛ-caprolactone) composites. Carbohydr Polym. 2014 Feb 15;102:746-54. doi: 10.1016/j.carbpol.2013.10.095. Epub 2013 Nov 7. PMID: 24507343.
  31. Zhao X, Pelfrey A, Pellicciotti A, Koelling K, Vodovotz Y. Synergistic effects of chain extenders and natural rubber on PLA thermal, rheological, mechanical and barrier properties. Polymer (Guildf). 2023;269:125712. doi: 10.1016/j.polymer.2023.125712.
  32. Sin M C, Tan IKP, Annuar MSM, Gan SN. Kinetics of thermodegradation of palm kernel oil derived medium-chain-length polyhydroxyalkanoates. J Appl Polym Sci. 2013;27(6):4422-5. doi: 10.1002/app.38033.
  33. Bellani CF, Pollet E, Hebraud A, Pereira FV, Schlatter G, Avérous L, Bretas RES, Branciforti MC. Morphological, thermal, and mechanical properties of poly(ε-caprolactone)/poly(ε-caprolactone)-grafted-cellulose nanocrystals mats produced by electrospinning. J Appl Polym Sci. 2016;133(21). doi: 10.1002/app.43445.
  34. Rodriguez AK, Mansoor B, Ayoub G, Colin X, Benzerga AA. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene. Polym Degrad Stab. 2020;180:109185. doi: 10.1016/j.polymdegradstab.2020.109185.
  35. Grause G, Chien MF, Inoue C. Changes during the weathering of polyolefins. Polym Degrad Stab. 2020;181: 109364. doi: 10.1016/j.polymdegradstab.2020.109364.
  36. Qiao RM, Zhao CP, Liu JL, Zhang ML, He WQ. Synthesis of Novel Ultraviolet Absorbers and Preparation and Field Application of Anti-Ultraviolet Aging PBAT/UVA Films. Polymers (Basel). 2022 Mar 31;14(7):1434. doi: 10.3390/polym14071434. PMID: 35406307; PMCID: PMC9003559.
  37. Liu, L, Duan, H, Zhan, W, Zhan, S, Jia, D, Li, Y, Li, C, An, J, Du, C, Li, J. Effects of UV irradiation time on the molecular structure of typical engineering plastics and tribological properties under heavy load. High Perform Polym. 2022 Apr;34(3):352-362. doi: 10.1177/09540083211066537.
  38. Bracco P, Costa L, Luda MP, Billingham NA. A review of experimental studies of the role of free-radicals in polyethylene oxidation. Polym Degrad Stab. 2018;155:67-83. doi: 10.1016/j.polymdegradstab.2018.07.011.
  39. Delre A, Goudriaan M, Morales VH, Vaksmaa A, Ndhlovu RT, Baas M, Keijzer E, de Groot T, Zeghal E, Egger M, Röckmann T, Niemann H. Plastic photodegradation under simulated marine conditions. Mar Pollut Bull. 2023;187:114544. doi: 10.1016/j.marpolbul.2022.114544. Epub 2023 Jan 12. PMID: 36640499.
  40. Yang Y, Li Z, Yan C, Chadwick D, Jones DL, Liu E, Liu Q, Bai R, He W. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci Total Environ. 2022 Mar 25;814:152572. doi: 10.1016/j.scitotenv.2021.152572. Epub 2021 Dec 23. PMID: 34954175.
  41. You H, Huang B, Cao C, Liu X, Sun X, Xiao L, Qiu J, Luo Y, Qian Q, Chen Q. Adsorption-desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments. Mar Pollut Bull. 2021 Jun;167:112287. doi: 10.1016/j.marpolbul.2021.112287. Epub 2021 Apr 21. PMID: 33892435.
  42. Andrady AL, Barnes PW, Bornman JF, Gouin T, Madronich S, White CC, Zepp RG, Jansen MAK. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci Total Environ. 2022 Dec 10;851(Pt 2):158022. doi: 10.1016/j.scitotenv.2022.158022. Epub 2022 Aug 12. PMID: 35970458; PMCID: PMC9765214.
  43. Lim J, Kim J. UV-photodegradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-HHx). Macromol Res. 2016;24(1):9-13. doi: 10.1007/s13233-016-4004-x.
  44. Wei XF, Bohlén M, Lindblad C, Hedenqvist M, Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021 Jun 15;198:117123. doi: 10.1016/j.watres.2021.117123. Epub 2021 Apr 6. PMID: 33865028.
  45. Bao R, Cheng Z, Hou Y, Xie C, Pu J, Peng L, Gao L, Chen W, Su Y. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. J Hazard Mater. 2022 Oct 5;439:129686. doi: 10.1016/j.jhazmat.2022.129686. Epub 2022 Jul 26. PMID: 36104912.
  46. Oliveira J, Almeida PL, Sobral RG, Lourenço ND, Gaudêncio SP. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics-A Circular Bioeconomy Approach. Mar Drugs. 2022 Dec 1;20(12):760. doi: 10.3390/md20120760. PMID: 36547907; PMCID: PMC9783806.
  47. Chen X, Xiong X, Jiang X, Shi H, Wu C. Sinking of floating plastic debris caused by biofilm development in a freshwater lake. Chemosphere. 2019 May;222:856-864. doi: 10.1016/j.chemosphere.2019.02.015. Epub 2019 Feb 6. PMID: 30743237.


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search