Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Fungal Infection and Mycotoxins Contamination on Farm-Stored Chickpea in Major Producing Districts of Ethiopia

Biology Group    Start Submission

Samuel Alemayehu* Fetien Abay Abera, Kiros Meles Ayimut, Jagger Harvey, Rizana Mahroof, Bhadriraju Subramanyam and Jonathan Ulmer

Volume4-Issue3
Dates: Received: 2023-03-06 | Accepted: 2023-03-16 | Published: 2023-03-16
Pages: 413-425

Abstract

Crop susceptibility to moisture content, quality of storage facilities in the farm contributes to fungal infections and mycotoxin contamination. Chickpea grain loss in many parts of the world has been due to inadequate and poor storage facilities, post-harvest activities leading to mycotoxins and fungal infections. The current research investigated the prevalence of fungal infection and mycotoxin level in farm chickpea across five major growing districts in Ethiopia. In the current study, fungal infection and mycotoxin concentrations were investigated in two Desi and Kabuli type varieties of samples containing 150 chickpea kernels collected from five districts in Ethiopia. Additionally, moisture content, relative humidity, and temperature were also investigated during sampling. Moisture levels ranged from 13.3 - 22.3% with a mean value of 16.4% across the five districts. There was no significant difference between the two varieties studied. Survey of different storage techniques used by farmers showed that polypropylene bags were most common and accounted for 54.7%, followed by gotta 45.3%. The total fungal infection in chickpea kernels across the sampled districts range 23 - 79%. Infection with Aspergillus genera was predominant, accounting for approximately 44.3% of the total (25 - 62.5%), followed by Penicillium spp. at 34.3% (10.9 - 55.3%) and Fusarium spp. 21.4% (9.6 - 42.3%) as the lowest. A cross the studied districts, chickpea germination ranged from 68.8% to 75.5%. Total aflatoxins levels ranged from 2.5 to 31.1 ppb and a mean of 17.4 ppb. Ochratoxin A concentrations ranged from 4.3 to 35.0 ppb, with a mean value of 10.6 ppb. Fumonisins (18.7%), ranged from 0.2 to 2.9 ppm and Deoxynivalenol (6.7%) ranged from 0.2 to 2.9 ppm. Chickpea samples had a high level of total aflatoxins (ppb), followed by ochratoxin A. Even though, the current co-occurrence of mycotoxins found is at low levels, it may adversely affect the health of regular consumers and the quality of Chickpea. Further investigations should be performed in different regions to help in advising and making decisions to the relevant government institutions on the appropriate measures to be undertaken.

FullText HTML FullText PDF DOI: 10.37871/jbres1690


Certificate of Publication




Copyright

© 2023 Alemayehu S, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Alemayehu S, Abera FA, Ayimut KM, Harvey J, Mahroof R, Subramanyam B, Ulmer J. Fungal Infection and Mycotoxins Contamination on Farm-Stored Chickpea in Major Producing Districts of Ethiopia. 2023 Mar 14; 4(3): 413-425. doi: 10.37871/jbres1690, Article ID: JBRES1690, Available at: https://www.jelsciences.com/articles/jbres1690.pdf


Subject area(s)

References


  1. Van Gastel AJG, Bishaw Z, Niane AA, Gregg BR, Gan Y. Chickpea seed production. Chickpea Breed Manag. 2007;417-444. doi: 10.1079/9781845932138.020.
  2. Boere A, Rutgers T, Willems D, Kidane D, Dolfen W. Business opportunities report: Oilseeds and pulses. Ethiopian Netherlands Bus event. 5-6 November 2015.
  3. Joshi PK, Rao PP, Gowda CLL, Jones RB, Silim SN, Saxena KB, Kumar J. The world chickpea and pigeon pea economies: Facts, trends, and outlook. 2001.
  4. Gowda C, Gowra C. Global scenario of chickpea research-present status and future thrusts. Pulses New Perspect. 2004;22.
  5. Alemayehu S, Abay F, Ayimut KM, Assefa D, Chala A, Mahroof R, Harvey J, Subramanyam B. Evaluating different hermetic storage technologies to arrest mold growth, prevent mycotoxin accumulation and preserve germination quality of stored chickpea in Ethiopia. J Stored Prod Res. 2020;85:101526. doi: 10.1016/j.jspr.2019.101526.
  6. Haile A. On-farm storage studies on sorghum and chickpea in Eritrea. African J Biotechnol. 2006;5:1537-1544.
  7. Thudi M, Roorkiwal M, Kudapa H, Chaturvedi SK, Singh NP, Varshney RK. An overview of chickpea research: From discovery to delivery. Pulse India. 2017;11:22-25.
  8. Francom MG, Counselor A. Ethiopia’s oilseed sector set to expand. GAIN Report. 2018;19:15.
  9. Getachew T. Pulse crops production opportunities, challenges and its value chain in Ethiopia:  A Review Article. Journal of Environment and Earth Science. 2019;9:20-29. doi: 10.7176/JEES/9-1-03.
  10. Kassie M, Shiferaw B, Asfaw S, Abate T, Muricho G, Ferede S, Eshete M, Assefa K. Current situation and future outlooks of the chickpea sub‐sector in Ethiopia. Icrisat. 2009.
  11. Tadesse M. Survey of chickpea (Cicer arietinum L.) Ascochyta blight (Ascochyta rabiei) disease status in production regions of Ethiopia. Plant. 2017;5:23.
  12. Jones R, Audi P, Shiferaw B, Gwata E. Production and marketing of Kabuli chickpea seeds in Ethiopia: Experiences from Ada District. 2006;1-48.
  13. Korbu L, Damte T, Fikre A. Harnessing chickpea value chain for nutrition security and commercialization of smallho l der agriculture in Africa. Ethiopia. 2016.
  14. Muehlbauer FJ, Sarker A. The Chickpea Genome. Springer; 2017. p.5-13.
  15. CSA. Report on area and production for major crops (private peasant holdings, Meher season). Stat Bull No 584. 2017.
  16. Singh N, Dash S, Khan YJ. Survival of chickpea, sesame, Niger, castor and safflower seeds stored at low and ultra-low moisture contents for 16-18 years. Seed Sci Technol. 2016;44:542-555.
  17. Patel JV, Antala DK, Satasiya RM. Effect different packaging materials on quality of chickpea grain during storage. Int J Pure Appl Biosci. 2018;6:437-446. doi: 10.18782/2320-6754.
  18. Ferede S, Fikre A, Ahmed S. Assessing the competitiveness of smallholder’s chickpea production in the central highlands of Ethiopia. 2018;6(2):51-65.
  19. Befikadu D. Factors affecting quality of grain stored in Ethiopian traditional storage structures and opportunities for improvement. Int J Sci J Basic Appl Res. 2014;18:235-257.
  20. Rao N, Silim SN, Simtowe F, Gaur PM, Gowda CLL, Monyo ES, Fikre A. Assefa K, Kileo R, Thagana WM, Macharia N. Enhancing chickpea productivity and production in Eastern and Southern Africa. Agricultural Plant Science. 2009;177-190.
  21. Ramirez ML, Cendoya E, Nichea MJ, Zachetti VGL, Chulze SN. Impact of toxigenic fungi and mycotoxins in chickpea: A review. Curr Opin Food Sci. 2018;23:32-37. doi: 10.1016/j.cofs.2018.05.003.
  22. Shamsi S, Khatun A. Prevalence of fungi in different varieties of chickpea (Cicer arietinum L.) seeds in storage. J Bangladesh Acad Sci. 2016;40:37-44. doi: 10.3329/jbas.v40i1.28323.
  23. Adekunle AJ. Estimating post-harvest loss: A challenge of developing nations. 2018.
  24. Esther M, Sharon M, Abirami CVK, Alagusundaram K. Grain storage management in India. J Postharvest Technol. 2014;02:012-024.
  25. Ahmad SK, Singh PL. Mycofloral changes and aflatoxin contamination in stored chickpea seeds. Food Addit Contam. 1991 Nov-Dec;8(6):723-30. doi: 10.1080/02652039109374030. PMID: 1812019.
  26. Wu F. Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts. Transgenic Res. 2006 Jun;15(3):277-89. doi: 10.1007/s11248-005-5237-1. PMID: 16779644.
  27. Gürses M. Mycoflora and aflatoxin content of hazelnuts, walnuts, peanuts, almonds and roasted chickpeas (LEBLEBI) sold in Turkey. Int J Food Prop. 2006;9:395-399. doi: 10.1080/10942910600596597.
  28. Mushtaq S, Akram A, Hanif NQ, Qureshi R, Akram Z, Akhund S, Nayyar BG. Natural incidence of aflatoxins, mycological profile and molecular characterization of aflatoxigenic strains in chickpea flour. Pakistan J Bot. 2015;47:1153-1160.
  29. Kirui MC, Alakonya AE, Talam KK, Tohru G, Bii CC. Total aflatoxin, fumonisin and deoxynivalenol contamination of busaa in Bomet county, Kenya. African Journal of Biotechnology. 2014;13:2675-2678. doi: 10.5897/AJB2014.13754.
  30. Wolde M. Effects of aflatoxin contamination of grains in Ethiopia. Int J Agric Sci. 2017;7:1298-1308.
  31. Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010 Jan;31(1):71-82. doi: 10.1093/carcin/bgp264. Epub 2009 Oct 29. PMID: 19875698; PMCID: PMC2802673.
  32. Manandhar A, Milindi P, Shah A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture. 2018;8:57. doi: 10.3390/agriculture8040057.
  33. Hell K, Cardwell KF, Setamou M, Poehling H. The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, west Africa. J Stored Prod Res. 2000 Oct 15;36(4):365-382. doi: 10.1016/s0022-474x(99)00056-9. PMID: 10880814.
  34. Ayalew A, Fehrmann H, Lepschy J, Beck R, Abate D. Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia. 2006 Jul;162(1):57-63. doi: 10.1007/s11046-006-0027-8. PMID: 16830193.
  35. Fuffa H, Urga K. Survey of aflatoxin contamination in Ethiopia. Ethiop J Heal Sci. 2001;11:1-25.
  36. Danso JK, Osekre EA, Opit GP, Manu N, Armstrong P, Arthur FH, Campbell JF, Mbata G, McNeill SG. Post-harvest insect infestation and mycotoxin levels in maize markets in the Middle Belt of Ghana. J Stored Prod Res. 2018;77:9-15. doi: 10.1016/j.jspr.2018.02.004.
  37. Worku AF, Merkuz A, Kalsa KK, Tenagashaw MW, Habtu NG. Occurrence of mycotoxins in farm-stored wheat in Ethiopia. African J Food, Agric Nutr Dev. 2019;19:14829-14847. doi: 10.18697/ajfand.87.18565.
  38. Salem NM, Ahmad R. Mycotoxins in food from Jordan: Preliminary survey. Food Control. 2010;21:1099-1103. doi: 10.1016/j.foodcont.2010.01.002.
  39. Rahimi K, Sani AM, Azizi EG. Effect of thermal treatment on ochratoxin content of chickpea. Nutr Food Sci. 2013;43:285-290.
  40. Zheng Z, Hanneken J, Houchins D, King RS, Lee P, Richard JL. Validation of an ELISA test kit for the detection of ochratoxin A in several food commodities by comparison with HPLC. Mycopathologia. 2005 Feb;159(2):265-72. doi: 10.1007/s11046-004-8663-3. PMID: 15770453.
  41. Getaneh DG, Tefera T, Fikre L, Seid A, Minale K, Abebe K, Abinet D. Farmers’ knowledge and practices on chickpea production and disease management in major chickpea growing areas of Ethiopia. Arch Phytopathol Plant Prot. 2021;1-22. doi: 10.1080/03235408.2021.1994269.
  42. Bachewe F, Minten B, Taffesse AS, Pauw K, Cameron A, Endaylalu TG. Farmers’ grain storage and losses in Ethiopia. Journal of Agricultural & Food Industrial Organization. 2019. doi: 10.1515/jafio-2019-0059.
  43. Likhayo P, Bruce AY, Tefera T, Mueke J. Maize grain stored in hermetic bags: Effect of moisture and pest infestation on grain quality. J Food Qual. 2018;2018:1-9. doi: 10.1155/2018/2515698.
  44. Alemayehu S, Abay F, Ayimut KM, Assefa D, Chala A, Mahroof R, et al. Evaluating different hermetic storage technologies to arrest mold growth, prevent mycotoxin accumulation and preserve germination quality of stored chickpea in Ethiopia. J Stored Prod Res. 2020;85.
  45. Worku AF, Kalsa KK, Abera M, Nigus HG. Effects of storage strategies on physicochemical properties of stored wheat in Ethiopia. AIMS Agric Food. 2019;4:578-591.
  46. Kabata A, Henry C, Moges D, Kebebu A, Whiting S, Regassa N, Tyler R. Determinants and constraints of pulse production and consumption among farming households of Ethiopia. J Food Res. 2016;6:41. doi: 10.5539/jfr.v6n1p41.
  47. Kebede E. Grain legumes production and productivity in Ethiopian smallholder agricultural system, contribution to livelihoods and the way forward. Cogent Food Agric. 2020;6. doi: 10.1080/23311932.2020.1722353.
  48. Zewdie A, Bedasa T. Evaluation of improved chickpea varieties for resistance to Fusarium wilt (Fusarium oxysporum) under field condition in sick plot. African Journal of Agricultural Research. 2018;13:2930-2935. doi: 10.5897/AJAR2018.13655.
  49. Ojiewo CO. Chickpea production, technology adoption and market linkages in Ethiopia chick pea production in Ethiopia by zone. Livingstone-Zambia. 2016.
  50. Sisay DT, Verhees FJHM, van Trijp HCM. Seed producer cooperatives in the Ethiopian seed sector and their role in seed supply improvement: A review. J Crop Improv. 2017;31:323-355. doi: 10.1080/15427528.2017.1303800.
  51. Bhandari G, Ghimire TB, Kaduwal S, Shrestha J, Acharya R. Effects of storage structures and moisture contents on seed quality attributes of quality protein maize. J Maize Res Dev. 2018;3:77-85. doi: 10.3126/jmrd.v3i1.18924.
  52. Jayaraman P, Kalyanasundaram I. Changes in moisture content, mycoflora and aflatoxin content of rice bran during storage. Mycopathologia. 1994 May;126(2):115-20. doi: 10.1007/BF01146203. PMID: 8065431.
  53. Mushtaq S, Akram A, Hanif NQ, Qureshi R, Akram Z, Akhund S, Nayyar BG. Natural incidence of aflatoxins, mycological profile and molecular characterization of aflatoxigenic strains in chickpea flour. Pakistan J Bot. 2015;47:1153-1160.
  54. Mabrouk Y, Belhadj O. Integrated pest management in chickpea. New Perspect Plant Prot. 2012;103. doi: 10.1080/23311932.2019.1615718.
  55. Tekle S, Skinnes H, Bjørnstad Å. The germination problem of oat seed lots affected by Fusarium head blight. Eur J Plant Pathol. 2013;135:147-158.
  56. Ashiq S. Natural Occurrence of Mycotoxins in Food and Feed: Pakistan Perspective. Compr Rev Food Sci Food Saf. 2015 Mar;14(2):159-175. doi: 10.1111/1541-4337.12122. Epub 2014 Dec 12. PMID: 33401806.
  57. Beheshti HR, Asadi M. Ochratoxin A in several grains in Iran. Food Addit Contam Part B Surveill. 2013;6(3):200-2. doi: 10.1080/19393210.2013.788075. Epub 2013 May 24. PMID: 24779905.
  58. Lutfullah G, Hussain A. Studies on contamination level of aflatoxins in some cereals and beans of Pakistan. Food Control. 2012;23:32-36. doi: 10.1016/j.foodcont.2011.06.004.
  59. Udomkun P, Wiredu AN, Nagle M, Bandyopadhyay R, Müller J, Vanlauwe B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control. 2017;72:110-122. doi: 10.1016/j.foodcont.2016.07.039.
  60. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011;15:129-144. doi: 10.1016/j.jscs.2010.06.006.
  61. Bowman J, Leslie J, Wu F. How mycotoxins impact agriculture, nutrition and development. USAID Bur Food Secur. 2012.
  62. Ramesh V, Bhat RV, Vasanthi S. Mycotoxin food safety risk in developing countries. Food Saf Food Secur Food Trade. 2003;1-2.
  63. Pinotti L, Ottoboni M, Giromini C, Dell'Orto V, Cheli F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins (Basel). 2016 Feb 15;8(2):45. doi: 10.3390/toxins8020045. PMID: 26891326; PMCID: PMC4773798.
  64. Bui-Klimke TR. Investigating the impacts of mycotoxin regulations on human health and trade. Diss Abstr Int Sect B Sci Eng. 2014;75.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search