Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

Spatial Analysis of Phospholipids in Insect Models by Positive Ionization Mode Matrix-Assisted Laser Desorption Ionization Mass Spectrometric Imaging

Biology Group    Start Submission

Suzeeta Bhandari, Harsheen Marwah, Laurent Calcul and David J Merkler*

Volume4-Issue3
Dates: Received: 2023-02-28 | Accepted: 2023-03-09 | Published: 2023-03-10
Pages: 363-371

Abstract

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI-MSI) has developed as a useful tool in generating comprehensive metabolite profiles along with spatial information in model organisms. The ability of MALDI-MSI to generate in situ profiles in whole organisms or specific tissue sections serves as an efficient alternative to solvent extraction protocols, especially for the identification of biomolecules that are unstable under extraction conditions. Herein, we have utilized MALDI-MSI to spatially profile various classes of lipids in two model organisms, Drosophila melanogaster (fruit fly), and Tribolium castaneum (red flour beetle). Five different classes of phospholipids were imaged in positive ionization mode in both insect species. Confirmation of the m/z assignment for selected lipids was performed using on-tissue MS/MS fragmentation.

FullText HTML FullText PDF DOI: 10.37871/jbres1684


Certificate of Publication




Copyright

© 2023 Bhandari S, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Bhandari S, Marwah H, Calcul L, Merkler DJ. Spatial Analysis of Phospholipids in Insect Models by Positive Ionization Mode Matrix-Assisted Laser Desorption Ionization Mass Spectrometric Imaging. 2023 Mar 10; 4(3): 363-371. doi: 10.37871/ jbres1684, Article ID: JBRES1684, Available at: https://www.jelsciences.com/articles/jbres1684.pdf


Subject area(s)

References


  1. Angel PM, Spraggins JM, Baldwin HS, Caprioli R. Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem. 2012 Feb 7;84(3):1557-64. doi: 10.1021/ac202383m. Epub 2012 Jan 25. PMID: 22243218; PMCID: PMC3277660.
  2. Liu Z, Huang X. Lipid metabolism in drosophila: development and disease. Acta Biochim Biophys Sin (Shanghai). 2013 Jan;45(1):44-50. doi: 10.1093/abbs/gms105. PMID: 23257293.
  3. Kraut R. Roles of Sphingolipids in Drosophila Development and Disease. J Neurochem. 2011 Mar;116(5):764-78. doi:10.1111/j.1471-4159.2010.07022.x. PMID: 33042014.
  4. Jeffries KA, Dempsey DR, Behari AL, Anderson RL, Merkler DJ. Drosophila Melanogaster as A Model System to Study Long-Chain Fatty Acid Amide Metabolism. FEBS Lett. 2014 May 2;588(9):1596-1602. doi:10.1016/j.febslet.2014.02.051. PMID: 24650760.
  5. Zahradníčková H, Tomčala A, Berková P, Schneedorferová I, Okrouhlík J, Simek P, Hodková M. Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: application to insects. J Sep Sci. 2014 Aug;37(15):2062-8. doi: 10.1002/jssc.201400113. Epub 2014 Jul 1. PMID: 24799084.
  6. Seeley EH, Caprioli RM. Imaging mass spectrometry: towards clinical diagnostics. Proteomics Clin Appl. 2008 Oct;2(10-11):1435-43. doi:10.1002/prca.200800013. PMID: 21136792.
  7. Gode D, Volmer DA. Lipid Imaging by Mass Spectrometry – A Review. Analyst. 2013;138(5):1289. doi:10.1039/c2an36337b. PMID: 23314100.
  8. Scott AJ, Jones JW, Orschell CM, MacVittie TJ, Kane MA, Ernst RK. Mass Spectrometry Imaging Enriches Biomarker Discovery Approaches with Candidate Mapping. Health Phys. 2014 Jan;106(1):120-28. doi:10.1097/HP.0b013e3182a4ec2f. PMID: 24276555.
  9. Moore KL, Lombi E, Zhao FJ, Grovenor CRM. Elemental Imaging at the Nanoscale: Nanosims and Complementary Techniques for Element Localisation in Plants. Anal Bioanal Chem. 2012 Apr 4;402(10):3263-73. doi:10.1007/s00216-011-5484-3. PMID: 22052155.
  10. Ifa DR, Wiseman JM, Song Q, Cooks RG. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (desi). Int J Mass Spectrom. 2007 Jan;259(1-3):8-15. doi: 10.1016/j.ijms.2006.08.003.
  11. Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum : A Model Insect for Fundamental and Applied Research. Annu Rev Entomol. 2022 Jan 7;67(1):347-65. doi:10.1146/annurev-ento-080921-075157. PMID: 34614365.
  12. Niu Y, Hardy G, Agarwal M, Hua L, Ren Y. Characterization of volatiles Tribolium castaneum (h.) In flour using solid phase microextraction-gas chromatography mass spectrometry (spme-gcms). Food Sci Hum Wellness. 2016 Mar;5(1):24-29. doi: 10.1016/j.fshw.2015.11.002.
  13. Trinh I, Boulianne GL. Modeling Obesity and Its Associated Disorders in Drosophila. Physiology. 2013 Mar;28(2):117-24. doi:10.1152/physiol.00025.2012. PMID: 23455770.
  14. Nelson KA, Daniels GJ, Fournie JW, Hemmer MJ. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging. J Biomol Tech. 2013 Sep;24(3):119-27. doi:10.7171/jbt.13-2403-002. PMID: 23997659.
  15. Khalil SM, Pretzel J, Becker K, Spengler B. High-resolution ap-smaldi mass spectrometry imaging of drosophila melanogaster. Int J Mass Spectrom. 2017 May;416:1-19. doi: 10.1016/j.ijms.2017.04.001.
  16. Khalil SM, Römpp A, Pretzel J, Becker K, Spengler B. Phospholipid Topography of Whole-Body Sections of the Anopheles stephensi Mosquito, Characterized by High-Resolution Atmospheric-Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem. 2015 Nov 17;87(22):11309-16. doi:10.1021/acs.analchem.5b02781. PMID: 26491885.
  17. Niehoff AC, Kettling H, Pirkl A, Chiang YN, Dreisewerd K, Yew JY. Analysis of Drosophila Lipids by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging. Anal Chem. 2014 Nov 18;86(22):11086-92. doi:10.1021/ac503171f. PMID: 25329240.
  18. Tuthill BF, Searcy LA, Yost RA, Musselman LP. Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI. J Lipid Res. 2020 Mar;61(3):275-90. doi:10.1194/jlr.RA119000198. PMID: 31900315.
  19. Goodwin RJA. Sample preparation for mass spectrometry imaging: Small Mistakes Can Lead to Big Consequences. J Proteomics. 2012 Aug;75(16):4893-911. doi:10.1016/j.jprot.2012.04.012. PMID: 22554910.
  20. Swales JG, Hamm G, Clench MR, Goodwin RJA. Mass spectrometry imaging and its application in pharmaceutical research and development: A concise review. Int J Mass Spectrom. 2019 Mar;437:99-112. doi: 10.1016/j.ijms.2018.02.007.
  21. Stutts WL, Knuth MM, Ekelöf M, Mahapatra D, Kullman SW, Muddiman DC. Methods for Cryosectioning and Mass Spectrometry Imaging of Whole-Body Zebrafish. J Am Soc Mass Spectrom. 2020 Apr 1;31(4):768-72. doi:10.1021/jasms.9b00097. PMID: 32129621.
  22. Truong JXM, Spotbeen X, White J, et al. Removal of Optimal Cutting Temperature (O.C.T.) Compound from Embedded Tissue for MALDI Imaging of Lipids. Anal Bioanal Chem. 2021 Apr 9;413(10):2695-708. doi:10.1007/s00216-020-03128-z. PMID: 33564925.
  23. Hansen RL, Lee YJ. High-Spatial Resolution Mass Spectrometry Imaging: Toward Single Cell Metabolomics in Plant Tissues. The Chem Rec. 2018 Jan;18(1):65-77. doi:10.1002/tcr.201700027. PMID: 28685965.
  24. Leopold J, Popkova Y, Engel K, Schiller J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules. 2018 Dec 13;8(4):173. doi:10.3390/biom8040173. PMID: 30551655.
  25. Asbury GR, Al-Saad K, Siems WF, Hannan RM, Hill HH. Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom. 1999 Oct 1;10(10):983-91. doi: 10.1016/S1044-0305(99)00063-X.
  26. Gibellini F, Smith TK. The Kennedy Pathway-De Novo Synthesis of Phosphatidylethanolamine and Phosphatidylcholine. IUBMB Life. 2010 Jun;62(6):414-28. doi: 10.1002/iub.337. PMID: 20503434.
  27. Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and Function of Phosphatidylcholine Transfer Protein (PC-TP)/StarD2. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2007 Jun;1771(6):654-62. doi:10.1016/j.bbalip.2007.04.003. PMID: 17499021.
  28. Dean AW, Glasgow BJ. Mass Spectrometric Identification of Phospholipids in Human Tears and Tear Lipocalin. Invest Ophthalmol Vis Sci. 2012 Apr 2;53(4):1773. doi:10.1167/iovs.11-9419. PMID: 22395887.
  29. Godzien J, Ciborowski M, Martínez-Alcázar MP, Samczuk P, Kretowski A, Barbas C. Rapid and Reliable Identification of Phospholipids for Untargeted Metabolomics with LC–ESI–QTOF–MS/MS. J Proteome Res. 2015 Aug 7;14(8):3204-16. doi:10.1021/acs.jproteome.5b00169. PMID: 26080858.
  30. Dawaliby R, Trubbia C, Delporte C, et al. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J Biol Chem. 2016 Feb;291(7):3658-67. doi:10.1074/jbc.M115.706523. PMID: 26663081.
  31. Furt F, Moreau P. Importance of Lipid Metabolism for Intracellular and Mitochondrial Membrane Fusion/fission Processes. Int J Biochem Cell Biol. 2009 Oct;41(10):1828-36. doi:10.1016/j.biocel.2009.02.005. PMID: 19703652.
  32. Hsu FF, Turk J. Studies on Phosphatidylserine by Tandem Quadrupole and Multiple Stage Quadrupole Ion-trap Mass Spectrometry with Electrospray Ionization: Structural Characterization and the Fragmentation Processes. J Am Soc Mass Spectrom. 2005 Sep 1;16(9):1510-22. doi:10.1016/j.jasms.2005.04.018. PMID: 16023863.
  33. Ham BM, Jacob JT, Cole RB. MALDI-TOF MS of Phosphorylated Lipids in Biological Fluids Using Immobilized Metal Affinity Chromatography and a Solid Ionic Crystal Matrix. Anal Chem. 2005 Jul 1;77(14):4439-47. doi:10.1021/ac058000a. PMID: 16013857.
  34. Arrese EL, Soulages JL. Insect Fat Body: Energy, Metabolism, and Regulation. Annu Rev Entomol. 2010 Jan 1;55(1):207-25. doi:10.1146/annurev-ento-112408-085356. PMID: 19725772.
  35. Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L. Mutations in the midway Gene Disrupt a Drosophila Acyl Coenzyme A: Diacylglycerol Acyltransferase. Genetics. 2002 Apr 1;160(4):1511-18. doi:10.1093/genetics/160.4.1511. PMID: 11973306.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search