Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Influence of Direct-Downscaling and One-Way Nesting on Daily Mean Air Temperature of Egypt Using the RegCM4

Environmental Sciences    Start Submission

Samy A Anwar*

Volume4-Issue3
Dates: Received: 2023-02-18 | Accepted: 2023-03-06 | Published: 2023-03-09
Pages: 338-347

Abstract

Daily mean air temperature (TMP) is an important indicator for a climate change study and it reflects the daily changes of the maximum and minimum air temperature. Downscaling of a General Circulation Model (GCM) to a regional scale is important to ensure accurate simulation of the TMP. To address this issue, a comparison was conducted between Direct Downscaling (DIR) and one-way nesting (NEST) using a Regional Climate Model (RegCM4) in the period 1997-2017 over Egypt. The ERA-Interim reanalysis of 1.5 degrees (EIN15) was used as the atmospheric forcing to downscale the RegCM4 over Egypt, while the fifth generation ECMWF atmospheric reanalysis was used to evaluate the RegCM4 concerning the Total Cloud Cover (CLT), surface short and longwave radiation fluxes (RSDS and RLDS), ground temperature (TS), sensible heat flux (HFSS) and TMP.

Results showed that there was no difference between DIR and NEST regarding the CLT and RSDS; while the NEST overestimated the RLDS more than the DIR particularly in the summer and autumn seasons in comparison with ERA5. Furthermore, the difference between DIR and NEST as the NEST overestimated the TS more than DIR in all seasons and in particular the summer and autumn seasons. This noted overestimation propagated to the HFSS explaining the high warm bias in the simulated TMP; which was higher in NEST than DIR. Such findings suggest that DIR was only affected by uncertainty associated with the EIN15. Additionally, this uncertainty was amplified using NEST because the uncertainty of EIN15 first propagated to the mother domain and then from the mother to the nested one. Despite of observed biases, DIR shows promising results more than NEST. Therefore, DIR can be recommended for future climate studies over Egypt.

FullText HTML FullText PDF DOI: 10.37871/jbres1681


Certificate of Publication




Copyright

© 2023 Anwar SA. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Anwar SA. Influence of Direct-Downscaling and One-Way Nesting on Daily Mean Air Temperature of Egypt Using the RegCM4. 2023 Mar 09; 4(3): 338-347. doi: 10.37871/jbres1681, Article ID: JBRES1681, Available at: https://www.jelsciences.com/ articles/jbres1681.pdf


Subject area(s)

References


  1. Chen L, Huang G, Wang X. Projected changes in temperature, precipitation, and their extremes over China through the RegCM. Clim Dyn. 2019;53(9):5859-5880. doi: 10.1007/s00382-019-04899-7.
  2. Adeniyi MO. Sensitivity of two dynamical cores in RegCM4.7 to the 2012 intense rainfall events over West Africa with focus on Lau, Nigeria. Int J Simul Model. 2020;40(5):355-365. doi: 10.1080/02286203.2019.1641777.
  3. Gu H, Yu Z, Richard PW, Wang X. Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Clim Dyn. 2020;54(7-8):3781-3801. doi: 10.1007/s00382-020-05205-6.
  4. Gao XJ, Shi Y, Han Z, Wang M, Giorgi F, Zhang D, Xu Y, Giorgi F. Performance of RegCM4 over major river basins in China. Adv Atmos Sci. 2017;34(4):441-455. doi: 10.1007/s00376-016-6179-7.
  5. Denis B, Laprise R, Caya D, Côté J. Downscaling ability of oneway nested regional climate models: The big-brother experiment. Clim Dyn. 2002;18(8):627-646. doi: 10.1007/s00382-001-0201-0.
  6. Leps N, Brauch J, Ahrens B. Sensitivity of limited area atmospheric simulations to lateral boundary conditions in idealized experiments. J Adv Model Earth Syst. 2019;11(8):2694-2707. doi: 10.1029/2019MS001625.
  7. Denis B, Laprise R, Caya D. Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Clim Dyn. 2003;20(2-3):107-126. doi: 10.1007/s00382-002-0264-6.
  8. Seth A, Rauscher SA, Camargo SJ, Qian JH, Pal JS. RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fi elds. Clim Dyn. 2007;28(5):461-480. doi: 10.1007/s00382-006-0191-z.
  9. Liu S, Liang XZ, Gao W, He Y, Ling T. Regional climate model simulations of the 1998 summer China fl ood: Dependence on initial and lateral boundary conditions. Open Atmospheric Sci J. 2011;5(1):96-105. doi: 10.2174/1874282301105010096.
  10. Meng C, Ma Y, Ma W, Xu Y. Modeling of a severe winter drought in eastern china using different initial and lateral boundary forcing datasets. Theor Appl Climatol. 2018;133(3):763-773. doi: 10.1007/s00704-017-2217-3.
  11. Xu X, Huang A, Huang Q, Zhang Y, Wu Y, Gu C, Cai S, Zhu X. Impacts of horizontal resolution of the lateral boundary conditions and downscaling method on the performance of RegCM4.6 in simulating the surface climate over centraleastern China. Earth Space Sci. 2022;9:e2022EA002433. doi: 10.1029/2022EA002433.
  12. Anwar SA, Salah Z, Khaled W, Zakey AS. Projecting the potential evapotranspiration in Egypt using a high-resolution Regional Climate Model (RegCM4). Environ Sci Proc. 2022;19:43. doi: 10.3390/ecas2022-12841.
  13. Mostafa SM, Anwar SA, Zakey AS, Wahab MMA. Bias-correcting the maximum and minimum air temperatures of Egypt using a high-resolution Regional Climate Model (RegCM4). Eng Proc. 2023;31:73. doi: 10.3390/ASEC2022-13852.
  14. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E. Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst. 2013;5:146-172. doi: 10.1002/jame.20015.
  15. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair VS, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien T, Tawfi k AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C. RegCM4: Regional Climate Model description and preliminary tests over multiple CORDEX domains. Clim Res. 2012;52:7-29.
  16. Ali AH, Salah Z, Anwar SA, Zakey AS. Infl uence of agricultural activity on the surface climate of new delta of Egypt using the RegCM4. Eng Proc. 2023;31:43. doi: 10.3390/ASEC2022-13763.
  17. Dee DP, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Magdalena, Alonso B, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Hólm E, Isaksen L, Kållberg PW, Köhler M, Matricardi M, McNally A, Monge-Sanz BM, Morcrette JJ, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol. Soc. 2011;137:553-597.
  18. Anwar SA, Mamadou O, Diallo I, Sylla MB. On the infl uence of vegetation cover changes and vegetation-runoff systems on the simulated summer potential evapotranspiration of tropical Africa using RegCM4. Earth Syst Environ. 2021;5:883-897. doi: 10.1007/s41748-021-00252-3.
  19. Anwar SA, Diallo I. Modelling the tropical African climate using a state-of-the-art coupled regional climate-vegetation model. Clim Dyn. 2022;58:97-113. doi: 10.1007/s00382-02-05892-9.
  20. Emanuel KA. A scheme for representing cumulus convection in large-scale models. J Atmos Sci. 1991;48(21): 2313-2335.
  21. Clough SA, Shephard MW, Mlawer EJ, Delamere JS. Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transfer. 2005;91:233-244.
  22. Holtslag AAM, Boville BA. Local versus nonlocal boundary layer diffusion in a global model. J Clim. 1993;6: 1825-1842.
  23. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz SJ, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara GD, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay Pd, Rozum I, Vamborg F, Villaume S, Thépaut JN. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020;146:1999-2049.
  24. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J Geophys Res. 1996;101:7209-7225.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search