Covid-19 Research

Descriptive Research

OCLC Number/Unique Identifier:

Do COVID-19 RNA-Injections Affect Male Fertility? Latest Facts and Perspective

Biology Group    Start Submission

Werner Bergholz and Klaus Steger*

Volume4-Issue1
Dates: Received: 2023-01-19 | Accepted: 2023-01-23 | Published: 2023-01-24
Pages: 040-063

Abstract

Background: Based on available data on male fertility adverse effects after COVID-19 injections, we draw the reader´s attention to open questions and undeniable risks of the new RNA-based vaccine technology.

Methods: Review and reanalysis of published data on pre- and post-injection semen analyses. Evaluation of UK Yellow Card and US VAERS databases for male fertility adverse effects and of the German deStatis database for monthly live birth rates after start of the governmental vaccination program.

Results: The deStatis database demonstrates a time shift of exactly nine months between the start of the governmental vaccination campaign (April 2021) and an abrupt decline in live births (January 2022). Frequency of male fertility adverse effects is approx. 100 times lower than that of female fertility. Remarkably, report numbers per one million doses are similar between AstraZeneca and BionTech/Pfizer, but significantly increased for Moderna despite overall numbers of administered doses are smaller than that of the other two manufacturers. Both increase in and correlation between erectile dysfunction and heart failure could be demonstrated. Review and reanalysis of published data on pre- and post-injection semen analyses identified a number of limitations of the currently available studies.

Conclusion: There remain still far more questions than answers. Due to the principle “primum non nocere,” any new medical therapy must be banned until harmlessness beyond doubt has been proven. Most importantly, it must be realized that the active ingredient of RNA-based vaccines is not simply mRNA promoting the synthesis of a nota bene viral specific protein, but modRNA specifically designed for longevity and encapsulated in LNPs to bypass biological barriers and get access to all cells, possibly also germ cells. As mRNA is involved in regulation of gene expression, cells have mechanisms at hand to silence mRNA species not required, however, theses protective mechanisms will not work with modRNA.

FullText HTML FullText PDF DOI: 10.37871/jbres1648


Certificate of Publication




Copyright

© 2023 Bergholz W, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Bergholz W, Steger K. Do COVID-19 RNA-Injections Affect Male Fertility? Latest Facts and Perspective. 2023 Jan 20; 4(1): 040-063. doi: 10.37871/jbres1648, Article ID: JBRES1648, Available at: https://www. jelsciences.com/articles/jbres1648.pdf


Subject area(s)

References


  1. Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol. 2021 Dec;21(4):100559. doi: 10.1016/j.repbio.2021.100559. Epub 2021 Sep 1. PMID: 34547545; PMCID: PMC8407955.
  2. Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020 Apr 9;9(4):920. doi: 10.3390/cells9040920. PMID: 32283711; PMCID: PMC7226809.
  3. Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM, Santos RA. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 2011 Jan;95(1):176-81. doi: 10.1016/j.fertnstert.2010.06.060. Epub 2010 Aug 1. PMID: 20674894.
  4. Diaz P, Zizzo J, Balaji NC, Reddy R, Khodamoradi K, Ory J, Ramasamy R. Fear about adverse effect on fertility is a major cause of COVID-19 vaccine hesitancy in the United States. Andrologia. 2022 May;54(4):e14361. doi: 10.1111/and.14361. Epub 2021 Dec 30. PMID: 34970749.
  5. Stukenborg JB, Colón E, Söder O. Ontogenesis of testis development and function in humans. Sex Dev. 2010 Sep;4(4-5):199-212. doi: 10.1159/000317090. Epub 2010 Jul 27. PMID: 20664245.
  6. Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol. 2019;132:257-310. doi: 10.1016/bs.ctdb.2018.12.006. Epub 2019 Jan 8. PMID: 30797511; PMCID: PMC7133493.
  7. Sharma R, Agarwal A. Spermatogenesis: An Overview. Agarwal A, editor. New York: Springer; 2011.
  8. Schagdarsurengin U, Paradowska A, Steger K. Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol. 2012 Nov;9(11):609-19. doi: 10.1038/nrurol.2012.183. Epub 2012 Oct 9. PMID: 23045264.
  9. Steger K, Balhorn R. Sperm nuclear protamines: A checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018 Aug;47(4):273-279. doi: 10.1111/ahe.12361. Epub 2018 May 23. PMID: 29797354.
  10. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008 Sep-Oct;29(5):469-87. doi: 10.2164/jandrol.107.004655. Epub 2008 May 22. PMID: 18497337.
  11. ISO 11462-1:2001(en). Guidelines for implementation of Statistical Process Control (SPC). Part 1: Elements of SPC. 1st ed.
  12. Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2022 Nov 15:dmac035. doi: 10.1093/humupd/dmac035. Epub ahead of print. PMID: 36377604.
  13. Diaconu CC, Manea M, Marcu DR, Socea B, Spinu AD, Bratu OG. The erectile dysfunction as a marker of cardiovascular disease: a review. Acta Cardiol. 2020 Aug;75(4):286-292. doi: 10.1080/00015385.2019.1590498. Epub 2019 Apr 6. PMID: 30955454.
  14. Blick. Available online: https://tinyurl.com/2q34ajlr (only German).
  15. Bujard M, Andersson G. Fertility declines near the end of the COVID-19 pandemic: Evidence of the 2022 birth declines in Germany and Sweden. Martin B, Gunnar A. Sweden: BiB Working Paper 6/2022; 2022.
  16. Antonini M, Eid MA, Falkenbach M, Rosenbluth ST, Prieto PA, Brammli-Greenberg S, McMeekin P, Paolucci F. An analysis of the COVID-19 vaccination campaigns in France, Israel, Italy and Spain and their impact on health and economic outcomes. Health Policy Technol. 2022 Jun;11(2):100594. doi: 10.1016/j.hlpt.2021.100594. Epub 2021 Dec 24. PMID: 34976711; PMCID: PMC8702636.
  17. Bonanad C, García-Blas S, Tarazona-Santabalbina F, Sanchis J, Bertomeu-González V, Fácila L, Ariza A, Núñez J, Cordero A. The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis With 611,583 Subjects. J Am Med Dir Assoc. 2020 Jul;21(7):915-918. doi: 10.1016/j.jamda.2020.05.045. Epub 2020 May 25. PMID: 32674819; PMCID: PMC7247470.
  18. DSouza KN, Orellana M, Ainsworth AJ, Cummings G, Riggan KA, Shenoy CC, Allyse MA. Impact of the COVID-19 Pandemic on Patient Fertility Care. J Patient Exp. 2022 May 6;9:23743735221098255. doi: 10.1177/23743735221098255. PMID: 35548663; PMCID: PMC9083039.
  19. Bowman CJ, Bouressam M, Campion SN, Cappon GD, Catlin NR, Cutler MW, Diekmann J, Rohde CM, Sellers RS, Lindemann C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod Toxicol. 2021 Aug;103:28-35. doi: 10.1016/j.reprotox.2021.05.007. Epub 2021 May 28. PMID: 34058573; PMCID: PMC8163337.
  20. Freedom of Information request no. 2021-4389. 2022.
  21. European Medicine Agency (EMA).
  22. Zaçe D, La Gatta E, Petrella L, Di Pietro ML. The impact of COVID-19 vaccines on fertility-A systematic review and meta-analysis. Vaccine. 2022 Oct 6;40(42):6023-6034. doi: 10.1016/j.vaccine.2022.09.019. Epub 2022 Sep 12. PMID: 36137903; PMCID: PMC9464596.
  23. Reschini M, Pagliardini L, Boeri L, Piazzini F, Bandini V, Fornelli G, Dolci C, Cermisoni GC, Viganò P, Somigliana E, Coccia ME, Papaleo E. COVID-19 Vaccination Does Not Affect Reproductive Health Parameters in Men. Front Public Health. 2022 Feb 2;10:839967. doi: 10.3389/fpubh.2022.839967. PMID: 35186854; PMCID: PMC8847439.
  24. Gonzalez DC, Nassau DE, Khodamoradi K, Ibrahim E, Blachman-Braun R, Ory J, Ramasamy R. Sperm Parameters Before and After COVID-19 mRNA Vaccination. JAMA. 2021 Jul 20;326(3):273-274. doi: 10.1001/jama.2021.9976. PMID: 34137808; PMCID: PMC8293015.
  25. Barda S, Laskov I, Grisaru D, Lehavi O, Kleiman S, Wenkert A, Azem F, Hauser R, Michaan N. The impact of COVID-19 vaccine on sperm quality. Int J Gynaecol Obstet. 2022 Jul;158(1):116-120. doi: 10.1002/ijgo.14135. Epub 2022 Feb 26. PMID: 35128663; PMCID: PMC9087610.
  26. Gat I, Kedem A, Dviri M, Umanski A, Levi M, Hourvitz A, Baum M. Covid-19 vaccination BNT162b2 temporarily impairs semen concentration and total motile count among semen donors. Andrology. 2022 Sep;10(6):1016-1022. doi: 10.1111/andr.13209. Epub 2022 Jun 27. PMID: 35713410; PMCID: PMC9350322.
  27. Lifshitz D, Haas J, Lebovitz O, Raviv G, Orvieto R, Aizer A. Does mRNA SARS-CoV-2 vaccine detrimentally affect male fertility, as reflected by semen analysis? Reprod Biomed Online. 2022 Jan;44(1):145-149. doi: 10.1016/j.rbmo.2021.09.021. Epub 2021 Oct 4. PMID: 34815157; PMCID: PMC8489287.
  28. Olana S, Mazzilli R, Salerno G, Zamponi V, Tarsitano MG, Simmaco M, Paoli D, Faggiano A. 4BNT162b2 mRNA COVID-19 vaccine and semen: What do we know? Andrology. 2022 Sep;10(6):1023-1029. doi: 10.1111/andr.13199. Epub 2022 Jun 8. PMID: 35647664; PMCID: PMC9348225.
  29. Safrai M, Herzberg S, Imbar T, Reubinoff B, Dior U, Ben-Meir A. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online. 2022 Apr;44(4):685-688. doi: 10.1016/j.rbmo.2022.01.008. Epub 2022 Jan 31. PMID: 35279377; PMCID: PMC8801893.
  30. Orvieto R, Noach-Hirsh M, Segev-Zahav A, Haas J, Nahum R, Aizer A. Does mRNA SARS-CoV-2 vaccine influence patients' performance during IVF-ET cycle? Reprod Biol Endocrinol. 2021 May 13;19(1):69. doi: 10.1186/s12958-021-00757-6. PMID: 33985514; PMCID: PMC8116639.
  31. Abd ZH, Muter SA, Saeed RAM, Ammar O. Effects of Covid-19 vaccination on different semen parameters. Basic Clin Androl. 2022 Aug 2;32(1):13. doi: 10.1186/s12610-022-00163-x. PMID: 35915409; PMCID: PMC9343088.
  32. Karavani G, Chill HH, Meirman C, Gutman-Ido E, Herzberg S, Tzipora T, Imbar T, Ben-Meir A. Sperm quality is not affected by the BNT162b2 mRNA SARS-CoV-2 vaccine: results of a 6-14 months follow-up. J Assist Reprod Genet. 2022 Oct;39(10):2249-2254. doi: 10.1007/s10815-022-02621-x. Epub 2022 Sep 17. PMID: 36114906; PMCID: PMC9483282.
  33. Keel BA. Within- and between-subject variation in semen parameters in infertile men and normal semen donors. Fertil Steril. 2006 Jan;85(1):128-34. doi: 10.1016/j.fertnstert.2005.06.048. PMID: 16412742.
  34. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020 Jun 16;24(1):353. doi: 10.1186/s13054-020-03062-7. PMID: 32546188; PMCID: PMC7296907.
  35. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, Zhang Y, Yin Q, Cho Y, Andrade L, Shadel GS, Hepokoski M, Lei T, Wang H, Zhang J, Yuan JX, Malhotra A, Manor U, Wang S, Yuan ZY, Shyy JY. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021 Apr 30;128(9):1323-1326. doi: 10.1161/CIRCRESAHA.121.318902. Epub 2021 Mar 31. PMID: 33784827; PMCID: PMC8091897.
  36. Mörz M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines (Basel). 2022 Oct 1;10(10):1651. doi: 10.3390/vaccines10101651. PMID: 36298516; PMCID: PMC9611676.
  37. Pittoggi C, Beraldi R, Sciamanna I, Barberi L, Giordano R, Magnano AR, Torosantucci L, Pescarmona E, Spadafora C. Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA. Mol Reprod Dev. 2006 Oct;73(10):1239-46. doi: 10.1002/mrd.20550. PMID: 16850445.
  38. Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol. 2020 Aug 7;8:657. doi: 10.3389/fcell.2020.00657. PMID: 32850797; PMCID: PMC7426637.
  39. Cosentino M, Marino F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int J Mol Sci. 2022 Sep 17;23(18):10881. doi: 10.3390/ijms231810881. PMID: 36142792; PMCID: PMC9502275.
  40. Hong L, Wang Z, Wei X, Shi J, Li C. Antibodies against polyethylene glycol in human blood: A literature review. J Pharmacol Toxicol Methods. 2020 Mar-Apr;102:106678. doi: 10.1016/j.vascn.2020.106678. Epub 2020 Jan 23. PMID: 31981619.
  41. Lan Z, Yang WX. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond). 2012 Apr;7(4):579-96. doi: 10.2217/nnm.12.20. PMID: 22471721.
  42. Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018 Dec 11;13:8487-8506. doi: 10.2147/IJN.S170723. PMID: 30587973; PMCID: PMC6294055.
  43. Doucet AJ, Wilusz JE, Miyoshi T, Liu Y, Moran JV. A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell. 2015 Dec 3;60(5):728-741. doi: 10.1016/j.molcel.2015.10.012. Epub 2015 Nov 12. PMID: 26585388; PMCID: PMC4671821.
  44. Biontech Homepage.
  45. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014 Oct;13(10):759-80. doi: 10.1038/nrd4278. Epub 2014 Sep 19. PMID: 25233993.
  46. Seneff S, Nigh G. Worse than the Disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. Int J Vacc Theory Pract Res. 2021;2:38-79. doi: 10.56098/ijvtpr.v2i1.23.
  47. Sfera A, Thomas KG, Sfera DO, Anton JJ, Andronescu CV, Jafri N, Sasannia S, Kozlakidis Z. Do messenger RNA vaccines induce pathological syncytia? Int J Pathol Clin Res. 2022;8:137. doi: 10.23937/2469-5807/1510137.
  48. Zhang L, Richards A, Barrasa MI, Hughes SH, Young RA, Jaenisch R. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2105968118. doi: 10.1073/pnas.2105968118. PMID: 33958444; PMCID: PMC8166107.
  49. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062. Erratum in: Nature 2001 Aug 2;412(6846):565. Erratum in: Nature 2001 Jun 7;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]. PMID: 11237011.
  50. Coffin JM, Fan H. The Discovery of Reverse Transcriptase. Annu Rev Virol. 2016 Sep 29;3(1):29-51. doi: 10.1146/annurev-virology-110615-035556. Epub 2016 Jul 22. PMID: 27482900.
  51. Jones RB, Song H, Xu Y, Garrison KE, Buzdin AA, Anwar N, Hunter DV, Mujib S, Mihajlovic V, Martin E, Lee E, Kuciak M, Raposo RA, Bozorgzad A, Meiklejohn DA, Ndhlovu LC, Nixon DF, Ostrowski MA. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells. J Virol. 2013 Dec;87(24):13307-20. doi: 10.1128/JVI.02257-13. Epub 2013 Oct 2. PMID: 24089548; PMCID: PMC3838212.
  52. Yin Y, Liu XZ, He X, Zhou LQ. Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells. Front Cell Infect Microbiol. 2021 Feb 25;11:609160. doi: 10.3389/fcimb.2021.609160. PMID: 33732659; PMCID: PMC7959850.
  53. Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, De Marinis Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr Issues Mol Biol. 2022 Feb 25;44(3):1115-1126. doi: 10.3390/cimb44030073. PMID: 35723296; PMCID: PMC8946961.
  54. Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020 Jun 9;7(5):e781. doi: 10.1212/NXI.0000000000000781. PMID: 32518172; PMCID: PMC7309518.
  55. Furer V, Zisman D, Kibari A, Rimar D, Paran Y, Elkayam O. Herpes zoster following BNT162b2 mRNA COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: a case series. Rheumatology (Oxford). 2021 Oct 9;60(SI):SI90-SI95. doi: 10.1093/rheumatology/keab345. PMID: 33848321; PMCID: PMC8083327.
  56. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4894-9. doi: 10.1073/pnas.0307800101. Epub 2004 Mar 25. PMID: 15044706; PMCID: PMC387345.
  57. Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel). 2022 Apr 20;13(5):719. doi: 10.3390/genes13050719. PMID: 35627104; PMCID: PMC9141755.
  58. Kyriakopoulos AM, McCullough PA, Nigh G, Seneff S. Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA. Vaccination. PrePrint. 2022. doi:10.22541/au.166203678.82079667/v1.
  59. Morozov VA, Dao Thi VL, Denner J. The transmembrane protein of the human endogenous retrovirus--K (HERV-K) modulates cytokine release and gene expression. PLoS One. 2013 Aug 7;8(8):e70399. doi: 10.1371/journal.pone.0070399. PMID: 23950929; PMCID: PMC3737193.
  60. Zhao Y, Li Q, Yao C, Wang Z, Zhou Y, Wang Y, Liu L, Wang Y, Wang L, Qiao Z. Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression. Hum Reprod. 2006 Jun;21(6):1583-90. doi: 10.1093/humrep/del027. Epub 2006 Feb 24. PMID: 16501037.
  61. Rando OJ. Intergenerational Transfer of Epigenetic Information in Sperm. Cold Spring Harb Perspect Med. 2016 May 2;6(5):a022988. doi: 10.1101/cshperspect.a022988. PMID: 26801897; PMCID: PMC4852801.
  62. Gòdia M, Swanson G, Krawetz SA. A history of why fathers' RNA matters. Biol Reprod. 2018 Jul 1;99(1):147-159. doi: 10.1093/biolre/ioy007. PMID: 29514212.
  63. Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm. Cold Spring Harb Perspect Med. 2015 May 8;5(8):a023408. doi: 10.1101/cshperspect.a023408. PMID: 25957313; PMCID: PMC4526728.
  64. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007 Apr;8(4):272-85. doi: 10.1038/nrg2072. PMID: 17363976.
  65. Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet. 2017 Oct;49(10):1502-1510. doi: 10.1038/ng.3945. Epub 2017 Aug 28. PMID: 28846101.
  66. Spadafora C. Sperm-mediated 'reverse' gene transfer: a role of reverse transcriptase in the generation of new genetic information. Hum Reprod. 2008 Apr;23(4):735-40. doi: 10.1093/humrep/dem425. Epub 2008 Feb 11. PMID: 18270183.
  67. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA; Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013 Nov-Dec;19(6):604-24. doi: 10.1093/humupd/dmt031. Epub 2013 Jul 14. PMID: 23856356; PMCID: PMC3796946.
  68. Wykes SM, Visscher DW, Krawetz SA. Haploid transcripts persist in mature human spermatozoa. Mol Hum Reprod. 1997 Jan;3(1):15-9. doi: 10.1093/molehr/3.1.15. PMID: 9239704.
  69. Cossetti C, Lugini L, Astrologo L, Saggio I, Fais S, Spadafora C. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One. 2014 Jul 3;9(7):e101629. doi: 10.1371/journal.pone.0101629. PMID: 24992257; PMCID: PMC4081593.
  70. Spadafora C. Soma to germline inheritance of extrachromosomal genetic information via a LINE-1 reverse transcriptase-based mechanism. Bioessays. 2016 Aug;38(8):726-33. doi: 10.1002/bies.201500197. Epub 2016 Jun 17. PMID: 27315018.
  71. Batch codes and associated deaths, disabilities and illnesses for COVID-19 vaccines.
  72. Hoernes TP, Hüttenhofer A, Erlacher MD. mRNA modifications: Dynamic regulators of gene expression? RNA Biol. 2016 Sep;13(9):760-5. doi: 10.1080/15476286.2016.1203504. Epub 2016 Jun 28. PMID: 27351916; PMCID: PMC5014007.
  73. Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence. 2021 Dec;12(1):444-469. doi: 10.1080/21505594.2021.1871823. PMID: 33660566; PMCID: PMC7939569.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search