Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

Improvement of Bacterial Transformation Efficiency Using Biopolymers as Plasmid Complements

Biology Group    Start Submission

Jailson de A Santos*, Fabio OS Ribeiro, Roosevelt DS Bezerra, Durcilene A da Silva, and Daniel B Liarte

Volume4-Issue1
Dates: Received: 2023-01-03 | Accepted: 2023-01-17 | Published: 2023-01-20
Pages: 041-049

Abstract

The process of bacterial transformation results from the introduction of specific genetic material into bacteria cells and subsequent gene expression. This technology has significant applications in gene cloning technology, and allows new possibilities for genetic breeding. The use of cellulose and babassu mesocarp to improve the process was not found in the literature. Thus, the objective of this work was to evaluate the effect of biopolymers (cellulose and biopolymer rich in starch extracted from the babassu mesocarp) on the efficiency of this process. The biopolymers were characterized by XRD, FTIR, zeta potential, thermal analysis, agarose gel electrophoresis and DLS. The transformation was carried out using the plasmid pGEM and E. coli. It was investigated the cytotoxicity and the effect of different concentrations of the materials and plasmid DNA on the transformation. The study demonstrated that 0.050 mg/mL of both materials increased the efficiency of bacteria transformation, and small amount of DNA combining with the biopolymers allowed obtaining satisfactory results. Therefore, the biopolymers can be used in genetic studies involving the transfer of DNA into bacterial cells.

FullText HTML FullText PDF DOI: 10.37871/jbres1647


Certificate of Publication




Copyright

© 2023 de A Santos J, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

de A Santos J, Ribeiro FOS, Bezerra RDS, da Silva DA, Liarte DB, Osajima JA, da Silva Filho EC. Improvement of Bacterial Transformation Efficiency Using Biopolymers as Plasmid Complements. 2023 Jan 20; 4(1): 041-049. doi: 10.37871/ jbres1647, Article ID: JBRES1647, Available at: https://www.jelsciences.com/articles/jbres1647.pdf


Subject area(s)

References


  1. Soni SK, Sarkar S, Mirzadeh N, Selvakannan PR, Bhargava SK. Self-Assembled Functional Nanostructure of Plasmid DNA with Ionic Liquid [Bmim][PF₆]: Enhanced Efficiency in Bacterial Gene Transformation. Langmuir. 2015 Apr 28;31(16):4722-32. doi: 10.1021/acs.langmuir.5b00402. Epub 2015 Apr 15. PMID: 25843437.
  2. Johnson IS. Human insulin from recombinant DNA technology. Science. 1983 Feb 11;219(4585):632-7. doi: 10.1126/science.6337396. PMID: 6337396.
  3. Flodh H. Human Growth Hormone Produced with Recombinant DNA Technology: Development and Production. Acta Paediatrica. 1986;75. doi: 10.1111/j.1651-2227.1986.tb10356.x.
  4. Zajac BA, West DJ, McAleer WJ, Scolnick EM. Overview of clinical studies with hepatitis B vaccine made by recombinant DNA. J Infect. 1986 Jul;13 Suppl A:39-45. doi: 10.1016/s0163-4453(86)92668-x. PMID: 2943814.
  5. Arbige MV, Shetty JK, Chotani GK. Industrial Enzymology: The Next Chapter. Trends Biotechnol. 2019 Dec;37(12):1355-1366. doi: 10.1016/j.tibtech.2019.09.010. Epub 2019 Nov 1. PMID: 31679826.
  6. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, Pelicic V. Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3065-70. doi: 10.1073/pnas.1218832110. Epub 2013 Feb 5. PMID: 23386723; PMCID: PMC3581936.
  7. Das M, Raythata H, Chatterjee S. Bacterial Transformation: What? Why? How? And When? Annual Research & Review in Biology. 2017;16:35872. doi: 10.9734/ARRB/2017/35872.
  8. Singh M, Yadav A, Ma X, Amoah E. Plasmid DNA transformation in Escherichia coli: effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. International Journal of Biotechnology & Biochemistry. 2010;6.
  9. Xu L, Feng L, Dong S, Hao J, Yu Q. Carbon nanotubes modified by a paramagnetic cationic surfactant for migration of DNA and proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018;559:201-208.
  10. Gallego I, Villate-Beitia I, Martínez-Navarrete G, Menéndez M, López-Méndez T, Soto-Sánchez C, Zárate J, Puras G, Fernández E, Pedraz JL. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomedicine. 2019 Apr;17:308-318. doi: 10.1016/j.nano.2018.12.018. Epub 2019 Feb 18. PMID: 30790710.
  11. Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, Pomper MG, Green JJ. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release. 2017 Oct 10;263:18-28. doi: 10.1016/j.jconrel.2017.03.384. Epub 2017 Mar 27. PMID: 28351668; PMCID: PMC5636223.
  12. Li X, Xie QR, Zhang J, Xia W, Gu H. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials. 2011 Dec;32(35):9546-56. doi: 10.1016/j.biomaterials.2011.08.068. Epub 2011 Sep 8. PMID: 21906804.
  13. Costa D, Briscoe WH, Queiroz J. Polyethylenimine coated plasmid DNA-surfactant complexes as potential gene delivery systems. Colloids Surf B Biointerfaces. 2015 Sep 1;133:156-63. doi: 10.1016/j.colsurfb.2015.06.005. Epub 2015 Jun 8. PMID: 26099970.
  14. Kuang W, Zhao X. Synthesis, characterization, and properties of novel hydrophobically associating fluorinated copolymers for DNA delivery. Reactive and Functional Polymers. 2013;73(5):703-709. doi: 10.1016/j.reactfunctpolym.2013.02.
  15. Fayazpour F, Lucas B, Alvarez-Lorenzo C, Sanders NN, Demeester J, De Smedt SC. Physicochemical and transfection properties of cationic Hydroxyethylcellulose/DNA nanoparticles. Biomacromolecules. 2006 Oct;7(10):2856-62. doi: 10.1021/bm060474b. PMID: 17025362.
  16. Goldshtein M, Shamir S, Vinogradov E, Monsonego A, Cohen S. Co-assembled Ca2+ Alginate-Sulfate Nanoparticles for Intracellular Plasmid DNA Delivery. Mol Ther Nucleic Acids. 2019 Jun 7;16:378-390. doi: 10.1016/j.omtn.2019.03.006. Epub 2019 Mar 28. PMID: 31003172; PMCID: PMC6475713.
  17. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MR, Taiwo OF, Hassan TM, Haafiz MK. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int J Biol Macromol. 2016 Dec;93(Pt A):789-804. doi: 10.1016/j.ijbiomac.2016.09.056. Epub 2016 Sep 16. PMID: 27645920.
  18. Bezerra RDS, Silva MMF, Morais AIS, Santos MRMC, Airoldi C, Silva Filho EC. Natural cellulose for ranitidine drug removal from aqueous solutions. Journal of Environmental Chemical Engineering. 2014;2(1):605-611. doi: 10.1016/j.jece.2013.10.016.
  19. Maniglia BC, Tapia-Blácido DR. Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids. 2016;55: doi: 10.1016/j.foodhyd.2015.11.001.
  20. Maniglia BC, Tessaro L, Ramos AP, Tapia-Blácido DR. Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids. 2018. doi: 10.1016/j.foodhyd.2018.10.038.
  21. Teixeira PRS, Teixeira ASDNM, Farias EAO, da Silva Filho EC, da Cunha HN, Dos Santos Júnior JR, Nunes LCC, Lima HRS, Eiras C. Development of a low-cost electrochemical sensor based on babassu mesocarp (Orbignya phalerata) immobilized on a flexible gold electrode for applications in sensors for 5-fluorouracil chemotherapeutics. Anal Bioanal Chem. 2019 Jan;411(3):659-667. doi: 10.1007/s00216-018-1480-1. Epub 2018 Dec 5. PMID: 30515537.
  22. Teixeira PRS, Teixeira AS do NM, Farias EA, de O da Silva DA, Nunes LCC, da Silva Leite CM, da Silva Filho EC, Eiras C. Chemically modified babassu coconut (Orbignya sp.) biopolymer: characterization and development of a thin film for its application in electrochemical sensors. Journal of Polymer Research. 2018;25(5). doi: 10.1007/s10965-018-1520-8.
  23. Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, de Melo JCP, da Silva Filho EC, Airoldi C. Copper sorption from aqueous solutions and sugar cane spirits by chemically modified babassu coconut (Orbignya speciosa) mesocarp. Chemical Engineering Journal. 2010;161(1-2):99-105. doi: 10.1016/j.cej.2010.04.036.
  24. Ghosh A, Razzino C do A, Dasgupta, A, Fujisawa K, Vieira LHS, Subramanian S, Costa, RS, Lobo AO, Ferreira OO, Robinson J, Terrones M, Terrones H, Viana BC. Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon. 2019. doi: 10.1016/j.carbon.2018.12.114
  25. Song Y, Sun Y, Zhang X, Zhou J, Zhang L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules. 2008 Aug;9(8):2259-64. doi: 10.1021/bm800429a. Epub 2008 Jul 19. PMID: 18637686.
  26. Ahsan HM, Zhang X, Li Y, Li B, Liu S. Surface modification of microcrystalline cellulose: Physicochemical characterization and applications in the Stabilization of Pickering emulsions. International Journal of Biological Macromolecules. 2019. doi: 10.1016/j.ijbiomac.2019.04.051.
  27. Wang Z, Huang W, Yang G, Liu Y, Liu S. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydrate Polymers. 2019;215:179-188. doi: 10.1016/j.carbpol.2019.03.097.
  28. Xu D, Zhang J, Cao Y, Wang J, Xiao J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT - Food Science and Technology. 2016;66:590-597. doi: 10.1016/j.lwt.2015.11.002.
  29. Silva LS, Ferreira FJL, Silva MS, Citó AMGL, Meneguin AB, Sábio RM, Barud HS, Bezerra RDS, Osajima JA, Silva Filho EC. Potential of amino-functionalized cellulose as an alternative sorbent intended to remove anionic dyes from aqueous solutions. International Journal of Biological Macromolecules. 2018;116:1282-1295. doi: 10.1016/j.ijbiomac.2018.05.034.
  30. Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose – structure and characterization. Cellulose Chemistry and Technology. 2011;45:13-21.
  31. Bezerra RDS, Leal RC, da Silva MS, Morais AIS, Marques THC, Osajima JA, Meneguin AB, da S Barud H, C da Silva Filho E. Direct Modification of Microcrystalline Cellulose with Ethylenediamine for use as Adsorbent for Removal Amitriptyline Drug from Environment. Molecules. 2017 Nov 22;22(11):2039. doi: 10.3390/molecules22112039. PMID: 29165380; PMCID: PMC6150279.
  32. Silva LS, Carvalho J, Bezerra RDS, Silva MS, Ferreira FJL, Osajima JA, da Silva Filho EC. Potential of Cellulose Functionalized with Carboxylic Acid as Biosorbent for the Removal of Cationic Dyes in Aqueous Solution. Molecules. 2018 Mar 23;23(4):743. doi: 10.3390/molecules23040743. PMID: 29570648; PMCID: PMC6017135.
  33. Liu Y, Liu A, Ibrahim SA, Yang H, Huang W. Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules. 2018;111:717-721. doi: 10.1016/j.ijbiomac.2018.01.098.
  34. Bezerra RDS, Morais AIS, Osajima JA, Nunes LCC, Silva Filho EC. Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline. International Journal of Biological Macromolecules. 2016;86:362-375. doi: 10.1016/j.ijbiomac.2016.01.063.
  35. Cheetham NW, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers. 1998;36(4):277-284. doi: 10.1016/s0144-8617(98)00007-1.
  36. Paiva D, Pereira AM, Pires AL, Martins J, Carvalho LH, Magalhães FD. Reinforcement of Thermoplastic Corn Starch with Crosslinked Starch/Chitosan Microparticles. Polymers (Basel). 2018 Sep 4;10(9):985. doi: 10.3390/polym10090985. PMID: 30960910; PMCID: PMC6403725.
  37. Mujtaba M, Kaya M, Akyuz L, Erdonmez D, Akyuz B, Sargin I. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations. International Journal of Biological Macromolecules. 2017;102:914-923. doi: 10.1016/j.ijbiomac.2017.04.104.
  38. Cumming G, Fidler F, Vaux DL. Error bars in experimental biology. J Cell Biol. 2007 Apr 9;177(1):7-11. doi: 10.1083/jcb.200611141. PMID: 17420288; PMCID: PMC2064100.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search