Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Regulation of Amino Acid Metabolism in Hematological Malignancies: Advances from Transcriptomics and Metabolomics

Medicine Group    Start Submission

Donald Bajia*, Gael Noel Neh Neba Ambe and Katarzyna Derwich

Volume3-Issue12
Dates: Received: 2022-11-29 | Accepted: 2022-12-09 | Published: 2022-12-12
Pages: 1478-1494

Abstract

Tumor cells use amino acids to rewire metabolic pathways to meet increased demands for energy, reducing equivalents, and cellular biosynthesis. Aside acting as building blocks for protein synthesis, amino acids also function as metabolic intermediates for ATP generation and redox homeostasis, as well as fueling biosynthetic pathways. Tumor-related metabolic changes influence every stage of the interaction between cells and their metabolites. Over the years, advancements in molecular methods such as transcriptomics and metabolomics have emerged to provide in-depth knowledge into the functions, interactions, and actions of molecules in cells of organisms. These technologies surfaced as methods that provide a more complete picture of disease pathophysiology, facilitating the elucidation of disease mechanisms and identification of potential biomarkers (metabolites) and targets (genes) respectively. Though Omics in cancer research have been explored in different concepts, however, employing these methods in amino acid metabolism in hematological cancers still requires attention. Therefore, this mini review discusses an up-to-date knowledge of principal regulators and their role in amino acid metabolism in hematological malignancies. In that perspective, we cover relevant findings from transcriptomics and metabolomics, thereby constructing mechanistic insights associated with disease pathogenesis.

FullText HTML FullText PDF DOI: 10.37871/jbres1622


Certificate of Publication




Copyright

© 2022 Bajia D, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Bajia D, Neba Ambe GNN, Derwich K. Regulation of Amino Acid Metabolism in Hematological Malignancies: Advances from Transcriptomics and Metabolomics. 2022 Dec 12; 3(12): 1478-1494. doi: 10.37871/jbresjbres1622, Article ID: JBRES1622, Available at: https://www.jelsciences.com/articles/jbres1622.pdf


Subject area(s)

References


  1. Auberger P, Tamburini-Bonnefoy J, Puissant A. Drug Resistance in Hematological Malignancies. Int J Mol Sci. 2020 Aug 24;21(17):6091. doi: 10.3390/ijms21176091. PMID: 32847013; PMCID: PMC7503602.
  2. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016 May 27;2(5):e1600200. doi: 10.1126/sciadv.1600200. PMID: 27386546; PMCID: PMC4928883.
  3. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020 Apr 10;368(6487):eaaw5473. doi: 10.1126/science.aaw5473. PMID: 32273439; PMCID: PMC7227780.
  4. ROSE WC, OESTERLING MJ, WOMACK M. Comparative growth on diets containing ten and 19 amino acids, with further observations upon the role of glutamic and aspartic acids. J Biol Chem. 1948 Nov;176(2):753-62. PMID: 18889930.
  5. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018 Dec;18(12):744-757. doi: 10.1038/s41568-018-0074-8. PMID: 30425336.
  6. Casero RA, Murray Stewart T, Pegg AE. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer. 2018 Nov;18(11):681-695.
  7. Stäubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, Islam S, Linnarsson S, Lehtiö J, Nordström A. Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem. 2015 Mar 27;290(13):8348-59. doi: 10.1074/jbc.M114.618769. Epub 2015 Feb 19. PMID: 25697355; PMCID: PMC4375488.
  8. Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab. 2017 Aug 1;26(2):301-309. doi: 10.1016/j.cmet.2017.07.001. PMID: 28768171; PMCID: PMC5560103.
  9. Liu D, Chen B, Mo Y, Wang Z, Qi T, Zhang Q, Wang Y. Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Nano Lett. 2019 Oct 9;19(10):6964-6976. doi: 10.1021/acs.nanolett.9b02306. Epub 2019 Sep 24. Erratum in: Nano Lett. 2020 Jan 17;: PMID: 31518149.
  10. Tabe Y, Lorenzi PL, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood. 2019 Sep 26;134(13):1014-1023. doi: 10.1182/blood.2019001034. Epub 2019 Aug 15. PMID: 31416801; PMCID: PMC6764269.
  11. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010 Dec 14;18(6):553-67. doi: 10.1016/j.ccr.2010.11.015. Epub 2010 Dec 9. PMID: 21130701; PMCID: PMC4105845.
  12. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014 Aug 5;20(2):306-319. doi: 10.1016/j.cmet.2014.06.004. Epub 2014 Jul 3. PMID: 24998913; PMCID: PMC4151270.
  13. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016 Jan 12;23(1):27-47. doi: 10.1016/j.cmet.2015.12.006. PMID: 26771115; PMCID: PMC4715268.
  14. Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022 Dec;13(12):877-919. doi: 10.1007/s13238-021-00846-7. Epub 2021 May 29. PMID: 34050894; PMCID: PMC9243210.
  15. Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci. 2022 Feb;65(2):236-279. doi: 10.1007/s11427-021-1999-2. Epub 2021 Nov 26. PMID: 34846643.
  16. van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, Langeveld M, Ferreira CR, van de Kamp JM, Hollak CE, Wasserman WW, Waterham HR, Wevers RA, Haack TB, Wanders RJA, Boycott KM. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis. 2018 May;41(3):571-582. doi: 10.1007/s10545-017-0128-1. Epub 2018 Jan 23. PMID: 29362952; PMCID: PMC5959952.
  17. Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, et al. Data integration in the era of omics: current and future challenges. BMC Syst Biol. 2014;8(Suppl 2):I1.
  18. Bjelosevic S, Gruber E, Newbold A, Shembrey C, Devlin JR, Hogg SJ, Kats L, Todorovski I, Fan Z, Abrehart TC, Pomilio G, Wei A, Gregory GP, Vervoort SJ, Brown KK, Johnstone RW. Serine Biosynthesis Is a Metabolic Vulnerability in FLT3-ITD-Driven Acute Myeloid Leukemia. Cancer Discov. 2021 Jun;11(6):1582-1599. doi: 10.1158/2159-8290.CD-20-0738. Epub 2021 Jan 12. PMID: 33436370.
  19. Gallo Cantafio ME, Grillone K, Caracciolo D, Scionti F, Arbitrio M, Barbieri V, Pensabene L, Guzzi PH, Di Martino MT. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High Throughput. 2018 Oct 26;7(4):33. doi: 10.3390/ht7040033. PMID: 30373182; PMCID: PMC6306876.
  20. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002 Feb;1(1):75-87. doi: 10.1016/s1535-6108(02)00018-1. PMID: 12086890.
  21. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017 Aug;49(8):1211-1218. doi: 10.1038/ng.3909. Epub 2017 Jul 3. PMID: 28671688; PMCID: PMC5535770.
  22. Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, Baruchel A, Toribio ML, Sigaux F. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005 Jul 1;106(1):274-86. doi: 10.1182/blood-2004-10-3900. Epub 2005 Mar 17. PMID: 15774621.
  23. Bornschein S, Demeyer S, Stirparo R, Gielen O, Vicente C, Geerdens E, Ghesquière B, Aerts S, Cools J, de Bock CE. Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia. 2018 Apr;32(4):941-951. doi: 10.1038/leu.2017.328. Epub 2017 Nov 20. PMID: 29151585; PMCID: PMC5886055.
  24. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi PP, Silverman LB, Hunger SP, Sallan SE, Look AT. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009 Jul 16;114(3):647-50. doi: 10.1182/blood-2009-02-206722. Epub 2009 May 20. PMID: 19458356; PMCID: PMC2713461.
  25. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH, Alt FW, Kelliher M, Look AT. Activating Notch1 mutations in mouse models of T-ALL. Blood. 2006 Jan 15;107(2):781-5. doi: 10.1182/blood-2005-06-2553. Epub 2005 Sep 15. PMID: 16166587; PMCID: PMC1895623.
  26. O'Neil J, Shank J, Cusson N, Murre C, Kelliher M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell. 2004 Jun;5(6):587-96. doi: 10.1016/j.ccr.2004.05.023. PMID: 15193261.
  27. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hébert J, Perreault C, Hoang T. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev. 2010 Jun 1;24(11):1093-105. doi: 10.1101/gad.1897910. PMID: 20516195; PMCID: PMC2878648.
  28. Ono Y, Fukuhara N, Yoshie O. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol. 1998 Dec;18(12):6939-50. doi: 10.1128/MCB.18.12.6939. PMID: 9819382; PMCID: PMC109277.
  29. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, Jamieson CH, Staudt LM, Young RA, Look AT. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012 Aug 14;22(2):209-21. doi: 10.1016/j.ccr.2012.06.007. PMID: 22897851; PMCID: PMC3422504.
  30. Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004 May;36(2):279-99. doi: 10.1081/dmr-120034001. PMID: 15237855.
  31. Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, Moy Ng L, Kitajima S, Li Z, Eng Juh Yeoh A, Hao Tan S, Sanda T. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica. 2021 Jun 1;106(6):1545-1558. doi: 10.3324/haematol.2019.245639. PMID: 32414855; PMCID: PMC8168519.
  32. Herranz D, Ambesi-Impiombato A, Sudderth J, Sánchez-Martín M, Belver L, Tosello V, Xu L, Wendorff AA, Castillo M, Haydu JE, Márquez J, Matés JM, Kung AL, Rayport S, Cordon-Cardo C, DeBerardinis RJ, Ferrando AA. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015 Oct;21(10):1182-9. doi: 10.1038/nm.3955. Epub 2015 Sep 21. PMID: 26390244; PMCID: PMC4598309.
  33. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, Draetta G, Sears R, Clurman BE, Look AT. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007 Aug 6;204(8):1813-24. doi: 10.1084/jem.20070876. Epub 2007 Jul 23. PMID: 17646409; PMCID: PMC2118656.
  34. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 2013 Jul;3(7):730-41. doi: 10.1158/2159-8290.CD-13-0083. Epub 2013 Jun 24. PMID: 23796461.
  35. Inoue S, Lemonnier F, Mak TW. Roles of IDH1/2 and TET2 mutations in myeloid disorders. Int J Hematol. 2016 Jun;103(6):627-33. doi: 10.1007/s12185-016-1973-7. Epub 2016 Mar 15. PMID: 26980223.
  36. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, Terada LS, Adams ND, McCabe MT, Pietrak B, Schmidt S, Metallo CM, Dranka BP, Schwartz B, DeBerardinis RJ. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016 Apr 14;532(7598):255-8. doi: 10.1038/nature17393. Epub 2016 Apr 6. PMID: 27049945; PMCID: PMC4860952.
  37. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602. PMID: 22101433; PMCID: PMC3710581.
  38. Chen D, Xia S, Zhang R, Li Y, Famulare CA, Fan H, Wu R, Wang M, Zhu AC, Elf SE, Su R, Dong L, Arellano M, Blum WG, Mao H, Lonial S, Stock W, Odenike O, Le Beau M, Boggon TJ, He C, Chen J, Gao X, Levine RL, Chen J. Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Mol Cell. 2021 Sep 16;81(18):3833-3847.e11. doi: 10.1016/j.molcel.2021.06.027. Epub 2021 Jul 20. PMID: 34289383; PMCID: PMC8455438.
  39. Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y, Pai MY, Li S, Ta L, Fazlollahi F, Chen C, Prins RM, Teitell MA, Nathanson DA, Lai A, Faull KF, Jiang M, Clarke SG, Cloughesy TF, Graeber TG, Braas D, Christofk HR, Jung ME, Reue K, Huang J. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metab. 2015 Sep 1;22(3):508-15. doi: 10.1016/j.cmet.2015.06.009. Epub 2015 Jul 16. PMID: 26190651; PMCID: PMC4663076.
  40. Sharma S, Agnihotri N, Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem Pharmacol. 2022 Apr;198:114943. doi: 10.1016/j.bcp.2022.114943. Epub 2022 Feb 5. PMID: 35131295.
  41. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest. 2013 Sep;123(9):3652-8. doi: 10.1172/JCI67228. Epub 2013 Sep 3. PMID: 23999438; PMCID: PMC3754247.
  42. Liu C, Zou W, Nie D, Li S, Duan C, Zhou M, Lai P, Yang S, Ji S, Li Y, Mei M, Bao S, Jin Y, Pan J. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab. 2022 Jun 7;34(6):818-835.e7. doi: 10.1016/j.cmet.2022.04.004. Epub 2022 May 3. PMID: 35508169.
  43. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012 Jan 20;148(1-2):259-72. doi: 10.1016/j.cell.2011.11.050. Epub 2012 Jan 5. Erratum in: Cell. 2012 Mar 2;148(5):1066. Mitchell, Wayne [added]. PMID: 22225612.
  44. Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015 Apr 16;520(7547):363-7. doi: 10.1038/nature14363. Epub 2015 Apr 8. PMID: 25855294; PMCID: PMC4533874.
  45. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013 Aug;13(8):572-83. doi: 10.1038/nrc3557. Epub 2013 Jul 4. PMID: 23822983; PMCID: PMC3806315.
  46. Karlíková R, Široká J, Friedecký D, Faber E, Hrdá M, Mičová K, Fikarová I, Gardlo A, Janečková H, Vrobel I, Adam T. Metabolite Profiling of the Plasma and Leukocytes of Chronic Myeloid Leukemia Patients. J Proteome Res. 2016 Sep 2;15(9):3158-66. doi: 10.1021/acs.jproteome.6b00356. Epub 2016 Aug 9. PMID: 27465658.
  47. Gallipoli P, Giotopoulos G, Tzelepis K, Costa ASH, Vohra S, Medina-Perez P, Basheer F, Marando L, Di Lisio L, Dias JML, Yun H, Sasca D, Horton SJ, Vassiliou G, Frezza C, Huntly BJP. Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood. 2018 Apr 12;131(15):1639-1653. doi: 10.1182/blood-2017-12-820035. Epub 2018 Feb 20. PMID: 29463564; PMCID: PMC6061932.
  48. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009 Apr 9;458(7239):762-5. doi: 10.1038/nature07823. Epub 2009 Feb 15. PMID: 19219026; PMCID: PMC2729443.
  49. Zavorka Thomas ME, Lu X, Talebi Z, Jeon JY, Buelow DR, Gibson AA, et al. Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3 -ITD–Positive AML. Molecular Cancer Therapeutics. 2021 Nov 1;20(11):2207–17.
  50. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990 Feb 16;247(4944):824-30. doi: 10.1126/science.2406902. PMID: 2406902.
  51. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D, Druker B, Gilliland DG. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7622-7. doi: 10.1073/pnas.102583199. PMID: 12032333; PMCID: PMC124303.
  52. Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr. 2005 Jun;135(6 Suppl):1557S-64S. doi: 10.1093/jn/135.6.1557S. Erratum in: J Nutr. 2005 Aug;135(8):2009. PMID: 15930469.
  53. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, Tayyari F, McSkimming D, Kannan N, Tojo A, Edison AS, Ito T. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017 May 25;545(7655):500-504. doi: 10.1038/nature22314. Epub 2017 May 17. PMID: 28514443; PMCID: PMC5554449.
  54. Caye A, Strullu M, Guidez F, Cassinat B, Gazal S, Fenneteau O, Lainey E, Nouri K, Nakhaei-Rad S, Dvorsky R, Lachenaud J, Pereira S, Vivent J, Verger E, Vidaud D, Galambrun C, Picard C, Petit A, Contet A, Poirée M, Sirvent N, Méchinaud F, Adjaoud D, Paillard C, Nelken B, Reguerre Y, Bertrand Y, Häussinger D, Dalle JH, Ahmadian MR, Baruchel A, Chomienne C, Cavé H. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015 Nov;47(11):1334-40. doi: 10.1038/ng.3420. Epub 2015 Oct 12. PMID: 26457648.
  55. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010 Aug;42(8):722-6. doi: 10.1038/ng.621. Epub 2010 Jul 4. PMID: 20601953.
  56. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010 Aug;42(8):665-7. doi: 10.1038/ng.620. Epub 2010 Jul 4. PMID: 20601954.
  57. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010 Feb;42(2):181-5. doi: 10.1038/ng.518. Epub 2010 Jan 17. PMID: 20081860; PMCID: PMC2850970.
  58. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010 Feb;42(2):181-5. doi: 10.1038/ng.518. Epub 2010 Jan 17. PMID: 20081860; PMCID: PMC2850970.
  59. Gu Z, Liu Y, Cai F, Patrick M, Zmajkovic J, Cao H, Zhang Y, Tasdogan A, Chen M, Qi L, Liu X, Li K, Lyu J, Dickerson KE, Chen W, Ni M, Merritt ME, Morrison SJ, Skoda RC, DeBerardinis RJ, Xu J. Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation. Cancer Discov. 2019 Sep;9(9):1228-1247. doi: 10.1158/2159-8290.CD-19-0152. Epub 2019 Jun 12. PMID: 31189531; PMCID: PMC6726547.
  60. Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, Vainchenker W, Green AR. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010 Apr 8;115(14):2891-900. doi: 10.1182/blood-2009-08-236596. Epub 2009 Dec 11. PMID: 20008300.
  61. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, Esquivel E, Yu A, Seepo S, Olsen S, Rosenberg M, Archambeault SL, Abusin G, Beckman K, Brown PA, Briones M, Carcamo B, Cooper T, Dahl GV, Emanuel PD, Fluchel MN, Goyal RK, Hayashi RJ, Hitzler J, Hugge C, Liu YL, Messinger YH, Mahoney DH Jr, Monteleone P, Nemecek ER, Roehrs PA, Schore RJ, Stine KC, Takemoto CM, Toretsky JA, Costello JF, Olshen AB, Stewart C, Li Y, Ma J, Gerbing RB, Alonzo TA, Getz G, Gruber T, Golub T, Stegmaier K, Loh ML. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015 Nov;47(11):1326-1333. doi: 10.1038/ng.3400. Epub 2015 Oct 12. Erratum in: Nat Genet. 2015 Nov;47(11):1333. Erratum in: Nat Genet. 2016 Jan;48(1):101. PMID: 26457647; PMCID: PMC4626387.
  62. Xu Y, Fang H, Chen Y, Tang Y, Sun H, Kong Z, Yang F, Kirschner-Schwabe R, Zhu L, Toker A, Xiao N, Zhou BS, Li H. The KRAS-G12D mutation induces metabolic vulnerability in B-cell acute lymphoblastic leukemia. iScience. 2022 Feb 7;25(3):103881. doi: 10.1016/j.isci.2022.103881. PMID: 35243242; PMCID: PMC8861657.
  63. Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci USA. 2019 May 7;116(19):9433–42.
  64. Fritz P, Coy JF, Mürdter TE, Ott G, Alscher MD, Friedel G. TKTL-1 expression in lung cancer. Pathol Res Pract. 2012 Apr 15;208(4):203-9. doi: 10.1016/j.prp.2012.01.007. Epub 2012 Mar 24. PMID: 22445516.
  65. Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S. Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res. 2009 Mar 30;28(1):43. doi: 10.1186/1756-9966-28-43. PMID: 19331662; PMCID: PMC2669053.
  66. da Costa IA, Hennenlotter J, Stühler V, Kühs U, Scharpf M, Todenhöfer T, Stenzl A, Bedke J. Transketolase like 1 (TKTL1) expression alterations in prostate cancer tumorigenesis. Urol Oncol. 2018 Oct;36(10):472.e21-472.e27. doi: 10.1016/j.urolonc.2018.06.010. Epub 2018 Aug 16. PMID: 30119993.
  67. Li J, Zhu SC, Li SG, Zhao Y, Xu JR, Song CY. TKTL1 promotes cell proliferation and metastasis in esophageal squamous cell carcinoma. Biomed Pharmacother. 2015 Aug;74:71-6. doi: 10.1016/j.biopha.2015.07.004. Epub 2015 Aug 3. PMID: 26349965.
  68. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020 Sep;52(9):1496-1516. doi: 10.1038/s12276-020-00504-8. Epub 2020 Sep 17. PMID: 32943735; PMCID: PMC8080614.
  69. Baptista I, Karakitsou E, Cazier JB, Günther UL, Marin S, Cascante M. TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression. Int J Mol Sci. 2022 Mar 25;23(7):3574. doi: 10.3390/ijms23073574. PMID: 35408935; PMCID: PMC8999113.
  70. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010 Dec 16;363(25):2424-33. doi: 10.1056/NEJMoa1005143. Epub 2010 Nov 10. PMID: 21067377; PMCID: PMC3201818.
  71. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MR, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012 Mar 22;366(12):1079-89. doi: 10.1056/NEJMoa1112304. Epub 2012 Mar 14. PMID: 22417203; PMCID: PMC3545649.
  72. Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, Yun H, Göhring G, Schlegelberger B, Hoelzer D, Lübbert M, Kanz L, Fiedler W, Kirchner H, Heil G, Krauter J, Ganser A, Heuser M. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol. 2011 Jul 20;29(21):2889-96. doi: 10.1200/JCO.2011.35.4894. Epub 2011 Jun 13. PMID: 21670448.
  73. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011 Mar 13;43(4):309-15. doi: 10.1038/ng.788. PMID: 21399634.
  74. Yang L, Liu Y, Zhang N, Ding X, Zhang W, Shen K, Huang L, Zhou J, Cui S, Zhu Z, Hu Z, Xiao M. Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget. 2017 May 2;8(18):30395-30409. doi: 10.18632/oncotarget.16449. PMID: 28418922; PMCID: PMC5444751.
  75. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, Bahr C, Zeisberger P, Przybylla A, Sohn M, Tönjes M, Erez A, Adler L, Jensen P, Scholl C, Fröhling S, Cocciardi S, Wuchter P, Thiede C, Flörcken A, Westermann J, Ehninger G, Lichter P, Hiller K, Hell R, Herrmann C, Ho AD, Krijgsveld J, Radlwimmer B, Trumpp A. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017 Nov 16;551(7680):384-388. doi: 10.1038/nature24294. Epub 2017 Nov 8. Erratum in: Nature. 2018 Aug;560(7718):E28. PMID: 29144447.
  76. Ni F, Yu WM, Li Z, Graham DK, Jin L, Kang S, Rossi MR, Li S, Broxmeyer HE, Qu CK. Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab. 2019 Mar;1(3):390-403. doi: 10.1038/s42255-019-0039-6. Epub 2019 Mar 11. PMID: 31535081; PMCID: PMC6750232.
  77. NOWELL PC, HUNGERFORD DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961 Nov;27:1013-35. PMID: 14480645.
  78. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973 Jun 1;243(5405):290-3. doi: 10.1038/243290a0. PMID: 4126434.
  79. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985 Jun 13-19;315(6020):550-4. doi: 10.1038/315550a0. PMID: 2989692.
  80. Sontakke P, Koczula KM, Jaques J, Wierenga AT, Brouwers-Vos AZ, Pruis M, Günther UL, Vellenga E, Schuringa JJ. Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation. PLoS One. 2016 Apr 7;11(4):e0153226. doi: 10.1371/journal.pone.0153226. PMID: 27055152; PMCID: PMC4824381.
  81. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, Chen X, Bishop JM. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012 Feb 8;15(2):157-70. doi: 10.1016/j.cmet.2011.12.015. PMID: 22326218; PMCID: PMC3282107.
  82. Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, Pressl C, Beattie BJ, Zanzonico PB, Gerecitano JF, Kelsen DP, Weber W, Lyashchenko SK, Kung HF, Lewis JS. In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology. 2018 May;287(2):667-675. doi: 10.1148/radiol.2017162610. Epub 2018 Jan 31. PMID: 29388903; PMCID: PMC5929369.
  83. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, Wahlig S, Chiba L, Kim SH, Morse J, Pradeep S, Nagaraja AS, Haemmerle M, Kyunghee N, Derichsweiler M, Plackemeier T, Mercado-Uribe I, Lopez-Berestein G, Moss T, Ram PT, Liu J, Lu X, Mok SC, Sood AK, Nagrath D. Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metab. 2016 Nov 8;24(5):685-700. doi: 10.1016/j.cmet.2016.10.011. PMID: 27829138; PMCID: PMC7329194.
  84. Zimmermann SC, Duvall B, Tsukamoto T. Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. J Med Chem. 2019 Jan 10;62(1):46-59. doi: 10.1021/acs.jmedchem.8b00327. Epub 2018 Jul 3. PMID: 29969024; PMCID: PMC6335185.
  85. Vogl DT, Younes A, Stewart K, Orford KW, Bennett M, Siegel D, et al. Phase 1 Study of CB-839, a First-in-Class, Glutaminase Inhibitor in Patients with Multiple Myeloma and Lymphoma. Blood. 2015 Dec 3;126(23):3059–3059.
  86. Wang ES, Frankfurt O, Orford KW, Bennett M, Flinn IW, Maris M, et al. Phase 1 Study of CB-839, a First-in-Class, Orally Administered Small Molecule Inhibitor of Glutaminase in Patients with Relapsed/Refractory Leukemia. Blood. 2015 Dec 3;126(23):2566–2566.
  87. Esslinger CS, Cybulski KA, Rhoderick JF. Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem. 2005 Feb 15;13(4):1111-8. doi: 10.1016/j.bmc.2004.11.028. PMID: 15670919.
  88. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, Sharick JT, Skala MC, Smith JA, Berlin J, Washington MK, Nickels ML, Manning HC. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med. 2018 Feb;24(2):194-202. doi: 10.1038/nm.4464. Epub 2018 Jan 15. PMID: 29334372; PMCID: PMC5803339.
  89. Scopelliti AJ, Font J, Vandenberg RJ, Boudker O, Ryan RM. Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat Commun. 2018 Jan 2;9(1):38. doi: 10.1038/s41467-017-02444-w. PMID: 29295993; PMCID: PMC5750217.
  90. Lee EJ, Duggirala KB, Lee Y, Yun MR, Jang J, Cyriac R, Jung ME, Choi G, Chae CH, Cho BC, Lee K. Novel allosteric glutaminase 1 inhibitors with macrocyclic structure activity relationship analysis. Bioorg Med Chem Lett. 2022 Nov 1;75:128956. doi: 10.1016/j.bmcl.2022.128956. Epub 2022 Aug 28. PMID: 36038117.
  91. Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC, Curthoys NP. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 2007 Sep 15;406(3):407-14. doi: 10.1042/BJ20070039. PMID: 17581113; PMCID: PMC2049044.
  92. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010 Sep 14;18(3):207-19. doi: 10.1016/j.ccr.2010.08.009. Erratum in: Cancer Cell. 2010 Oct 19;18(4):397. PMID: 20832749; PMCID: PMC3078749.
  93. Lee YZ, Yang CW, Chang HY, Hsu HY, Chen IS, Chang HS, Lee CH, Lee JC, Kumar CR, Qiu YQ, Chao YS, Lee SJ. Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget. 2014 Aug 15;5(15):6087-101. doi: 10.18632/oncotarget.2173. PMID: 25026281; PMCID: PMC4171615.
  94. Nakamura A, Nambu T, Ebara S, Hasegawa Y, Toyoshima K, Tsuchiya Y, Tomita D, Fujimoto J, Kurasawa O, Takahara C, Ando A, Nishigaki R, Satomi Y, Hata A, Hara T. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7776-E7785. doi: 10.1073/pnas.1805523115. Epub 2018 Jul 30. PMID: 30061420; PMCID: PMC6099884.
  95. MAGILL GB, MYERS WP, REILLY HC, PUTNAM RC, MAGILL JW, SYKES MP, ESCHER GC, KARNOFSKY DA, BURCHENAL JH. Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer. 1957 Nov-Dec;10(6):1138-50. doi: 10.1002/1097-0142(195711/12)10:6<1138::aid-cncr2820100608>3.0.co;2-k. PMID: 13489662.
  96. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell JD. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019 Nov 22;366(6468):1013-1021. doi: 10.1126/science.aav2588. Epub 2019 Nov 7. PMID: 31699883; PMCID: PMC7023461.
  97. Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, Englert JM, Arwood ML, Wen J, Chan-Li Y, Tenora L, Majer P, Rais R, Slusher BS, Horton MR, Powell JD. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest. 2020 Jul 1;130(7):3865-3884. doi: 10.1172/JCI131859. PMID: 32324593; PMCID: PMC7324212.
  98. Nabe S, Yamada T, Suzuki J, Toriyama K, Yasuoka T, Kuwahara M, Shiraishi A, Takenaka K, Yasukawa M, Yamashita M. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction. Cancer Sci. 2018 Dec;109(12):3737-3750. doi: 10.1111/cas.13827. Epub 2018 Nov 2. PMID: 30302856; PMCID: PMC6272119.
  99. Li C, You X, Xu X, Wu B, Liu Y, Tong T, Chen J, Li Y, Dai C, Ye Z, Tian X, Wei Y, Hao Z, Jiang L, Wu J, Zhao M. A Metabolic Reprogramming Amino Acid Polymer as an Immunosurveillance Activator and Leukemia Targeting Drug Carrier for T-Cell Acute Lymphoblastic Leukemia. Adv Sci (Weinh). 2022 Mar;9(9):e2104134. doi: 10.1002/advs.202104134. Epub 2022 Jan 26. PMID: 35080145; PMCID: PMC8948613.
  100. Christensen EM, Bogner AN, Vandekeere A, Tam GS, Patel SM, Becker DF, Fendt SM, Tanner JJ. In crystallo screening for proline analog inhibitors of the proline cycle enzyme PYCR1. J Biol Chem. 2020 Dec 25;295(52):18316-18327. doi: 10.1074/jbc.RA120.016106. Epub 2020 Oct 27. PMID: 33109600; PMCID: PMC7939384.
  101. Antti H, Sellstedt M. Metabolic effects of an aspartate aminotransferase-inhibitor on two T-cell lines. PLoS One. 2018 Dec 7;13(12):e0208025. doi: 10.1371/journal.pone.0208025. PMID: 30532126; PMCID: PMC6285999.
  102. Yamada RH, Wakabayashi Y, Iwashima A, Hasegawa T. Inhibition of aspartate aminotransferase by hydrazinosuccinate. Biochimica et Biophysica Acta (BBA) - General Subjects. 1984 Sep;801(1):151–4.
  103. Yamada RH, Wakabayashi Y, Iwashima A, Hasegawa T. Inhibition of aspartate aminotransferase by hydrazinosuccinate. Biochim Biophys Acta. 1984 Sep 7;801(1):151-4. doi: 10.1016/0304-4165(84)90224-1. PMID: 6547859.
  104. Yamada R hei, Wakabayashi Y, Iwashima A, Hasegawa T. In vivo inhibition of aspartate aminotransferase in mice by l-hydrazinosuccinate. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1987 Feb;911(3):372–5.
  105. El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci. 2021 Feb 21;22(4):2142. doi: 10.3390/ijms22042142. PMID: 33670011; PMCID: PMC7927105.
  106. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell. 2018 Dec 13;175(7):1780-1795.e19. doi: 10.1016/j.cell.2018.10.001. Epub 2018 Nov 1. PMID: 30392958; PMCID: PMC6361668.
  107. Britt EC, John SV, Locasale JW, Fan J. Metabolic regulation of epigenetic remodeling in immune cells. Current Opinion in Biotechnology. 2020 Jun;63:111–7.
  108. Hohtari H, Brück O, Blom S, Turkki R, Sinisalo M, Kovanen PE, et al. Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL. Leukemia. 2019 Jul;33(7):1570–82.
  109. Jones CL, Stevens BM, D'Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, Pei S, Khan N, Adane B, Ye H, Krug A, Reinhold D, Smith C, DeGregori J, Pollyea DA, Jordan CT. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell. 2019 Feb 11;35(2):333-335. doi: 10.1016/j.ccell.2019.01.013. Erratum for: Cancer Cell. 2018 Nov 12;34(5):724-740.e4. PMID: 30753831; PMCID: PMC6389327.
  110. Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int J Mol Sci. 2019 Sep 26;20(19):4781. doi: 10.3390/ijms20194781. PMID: 31561483; PMCID: PMC6801754.
  111. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018 May;19(5):299-310. doi: 10.1038/nrg.2018.4. Epub 2018 Feb 26. PMID: 29479082; PMCID: PMC5990367.
  112. Patt A, Siddiqui J, Zhang B, Mathé E. Integration of Metabolomics and Transcriptomics to Identify Gene-Metabolite Relationships Specific to Phenotype. In: Haznadar M, editor. Cancer Metabolism [Internet]. New York, NY: Springer New York; 2019 [cited 2022 Sep 30]. p. 441–68. (Methods in Molecular Biology; vol. 1928).


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search