Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Sustainable Cell Sources for Cultivated Meat

Biology Group    Start Submission

Derya Ozhava, Mohit Bhatia, Joseph Freman and Yong Mao*

Volume3-Issue11
Dates: Received: 2022-11-15 | Accepted: 2022-11-24 | Published: 2022-11-24
Pages: 1382-1388

Abstract

Cultivated meat (clean meat) is an emerging yet fast growing research field and industry with a great potential to overcome the limitations of traditional cattle meat production. Cultivated meat leverages the technologies of cell biology and tissue engineering, culturing multiple types of cells and assembling them into a tissue structure construct mimicking the muscle tissues of livestock animals. A sustainable cell source is the first and the utmost important component of cultivated meat technology. In this mini review, cell sources for the main cell types in cultivated meat (muscle cells and fat cells) are described. Stem cells with self-renewal and differentiation potential are the most prominent candidates. Progenitor stem cells from muscle tissues, mesenchymal stem cells isolated from many other tissues and induced Pluripotent Stem Cells (iPSCs) created from terminally differentiated cells have been used as cell sources for cultivated meat. To become a sustainable cell source, which can generate high quantity (extensive in vitro expansion) and high quality (stemness) cells for the making of cultivated meat, these cells still face the challenges and limitation intrinsically associated with in vitro culturing. The efforts and strategies to circumvent such limitations are also discussed.

FullText HTML FullText PDF DOI: 10.37871/jbres1607


Certificate of Publication




Copyright

© 2022 Ozhava D, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ozhava D, Bhatia M, Freman J, Mao Y. Sustainable Cell Sources for Cultivated Meat. 2022 Nov 24; 3(11): 1382-1388. doi: 10.37871/jbres1607, Article ID: JBRES1607, Available at: https://www.jelsciences.com/articles/jbres1607.pdf


Subject area(s)

References


  1. Choudhury D, Tseng TW, Swartz E. The Business of Cultured Meat. Trends Biotechnol. 2020 Jun;38(6):573-577. doi: 10.1016/j.tibtech.2020.02.012. PMID: 32407686.
  2. Catts O, Zurr I, The ethics of experiential engagement with the manipulation of life. Tactical Biopolitics: Art, Activism, and Technoscience. 2008;125-142. doi: 10.7551/mitpress/9780262042499.003.0008.
  3. Stephens N, Ruivenkamp M. Promise and Ontological Ambiguity in the In vitro Meat Imagescape: From Laboratory Myotubes to the Cultured Burger. Sci Cult (Lond). 2016 Jul 2;25(3):327-355. doi: 10.1080/09505431.2016.1171836. Epub 2016 Jul 8. PMID: 27695202; PMCID: PMC5022697.
  4. Ng ET, Singh S, Yap WS, Tay SH, Choudhury D. Cultured meat - a patentometric analysis. Crit Rev Food Sci Nutr. 2021 Oct 19:1-11. doi: 10.1080/10408398.2021.1980760. Epub ahead of print. PMID: 34664530.
  5. Reiss J, Robertson S, Suzuki M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int J Mol Sci. 2021 Jul 13;22(14):7513. doi: 10.3390/ijms22147513. PMID: 34299132; PMCID: PMC8307620.
  6. Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. How Muscle Structure and Composition Influence Meat and Flesh Quality. ScientificWorldJournal. 2016;2016:3182746. doi: 10.1155/2016/3182746. Epub 2016 Feb 28. PMID: 27022618; PMCID: PMC4789028.
  7. Zagury Y, Ianovici I, Landau S, Lavon N, Levenberg S. Engineered marble-like bovine fat tissue for cultured meat. Commun Biol. 2022 Sep 8;5(1):927. doi: 10.1038/s42003-022-03852-5. PMID: 36071206; PMCID: PMC9452530.
  8. Seah JSH, Singh S, Tan LP, Choudhury D. Scaffolds for the manufacture of cultured meat. Crit Rev Biotechnol. 2022 Mar;42(2):311-323. doi: 10.1080/07388551.2021.1931803. Epub 2021 Jun 20. PMID: 34151657.
  9. Allan SJ, De Bank PA, Ellis MJ. Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems. 2019. doi: 10.3389/fsufs.2019.00044.
  10. Sampath SC, Sampath SC, Millay DP. Myoblast fusion confusion: the resolution begins. Skelet Muscle. 2018 Jan 31;8(1):3. doi: 10.1186/s13395-017-0149-3. PMID: 29386054; PMCID: PMC5793351.
  11. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007 Dec;19(6):628-33. doi: 10.1016/j.ceb.2007.09.012. Epub 2007 Nov 8. PMID: 17996437; PMCID: PMC2215059.
  12. Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol. 2022 Jun;40(6):721-734. doi: 10.1016/j.tibtech.2021.11.004. Epub 2021 Dec 6. PMID: 34887105.
  13. Rodriguez-Outeiriño L, Hernandez-Torres F, Ramírez-de Acuña F, Matías-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Front Cell Dev Biol. 2021 Oct 15;9:750534. doi: 10.3389/fcell.2021.750534. PMID: 34722534; PMCID: PMC8554119.
  14. Syverud BC, Lee JD, VanDusen KW, Larkin LM. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. J Regen Med. 2014;3(2):117. doi: 10.4172/2325-9620.1000117. PMID: 26413555; PMCID: PMC4582791.
  15. Garcia SM, Tamaki S, Lee S, Wong A, Jose A, Dreux J, Kouklis G, Sbitany H, Seth R, Knott PD, Heaton C, Ryan WR, Kim EA, Hansen SL, Hoffman WY, Pomerantz JH. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells. Stem Cell Reports. 2018 Mar 13;10(3):1160-1174. doi: 10.1016/j.stemcr.2018.01.022. Epub 2018 Mar 1. PMID: 29478895; PMCID: PMC5918346.
  16. Ding S, Swennen GNM, Messmer T, Gagliardi M, Molin DGM, Li C, Zhou G, Post MJ. Maintaining bovine satellite cells stemness through p38 pathway. Sci Rep. 2018 Jul 17;8(1):10808. doi: 10.1038/s41598-018-28746-7. PMID: 30018348; PMCID: PMC6050236.
  17. Judson RN, Quarta M, Oudhoff MJ, Soliman H, Yi L, Chang CK, Loi G, Vander Werff R, Cait A, Hamer M, Blonigan J, Paine P, Doan LTN, Groppa E, He W, Su L, Zhang RH, Xu P, Eisner C, Low M, Barta I, Lewis CB, Zaph C, Karimi MM, Rando TA, Rossi FM. Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell. 2018 Feb 1;22(2):177-190.e7. doi: 10.1016/j.stem.2017.12.010. Epub 2018 Jan 25. PMID: 29395054; PMCID: PMC6031334.
  18. Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med. 2014 Oct;20(10):1174-81. doi: 10.1038/nm.3655. Epub 2014 Sep 7. Erratum in: Nat Med. 2014 Oct;(10):1217. Erratum in: Nat Med. 2015 Apr;21(4):414. PMID: 25194569; PMCID: PMC4191983.
  19. Flamini V, Ghadiali RS, Antczak P, Rothwell A, Turnbull JE, Pisconti A. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53. Stem Cell Reports. 2018 Mar 13;10(3):970-983. doi: 10.1016/j.stemcr.2018.01.007. Epub 2018 Feb 8. PMID: 29429962; PMCID: PMC5918193.
  20. Thomas K, Engler AJ, Meyer GA. Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res. 2015 Feb;56(1):1-8. doi: 10.3109/03008207.2014.947369. Epub 2014 Aug 12. PMID: 25047058; PMCID: PMC4464813.
  21. Li X, Wang Z, Tong H, Yan Y, Li S. Effects of COL8A1 on the proliferation of muscle-derived satellite cells. Cell Biol Int. 2018 Sep;42(9):1132-1140. doi: 10.1002/cbin.10979. Epub 2018 Jul 23. PMID: 29696735.
  22. Wilschut KJ, Haagsman HP, Roelen BA. Extracellular matrix components direct porcine muscle stem cell behavior. Exp Cell Res. 2010 Feb 1;316(3):341-52. doi: 10.1016/j.yexcr.2009.10.014. Epub 2009 Oct 22. PMID: 19853598.
  23. Soice E, Johnston J. Immortalizing Cells for Human Consumption. Int J Mol Sci. 2021 Oct 28;22(21):11660. doi: 10.3390/ijms222111660. PMID: 34769088; PMCID: PMC8584139.
  24. Lu T, Huang Y, Wang H, Ma Y, Guan W. Multi-lineage potential research of bone marrow-derived stromal cells (BMSCs) from cattle. Appl Biochem Biotechnol. 2014 Jan;172(1):21-35. doi: 10.1007/s12010-013-0458-x. Epub 2013 Sep 18. PMID: 24043451.
  25. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005 Feb;319(2):243-53. doi: 10.1007/s00441-004-1012-5. Epub 2004 Nov 20. PMID: 15654654.
  26. Ren Y, Wu H, Ma Y, Cang M, Wang R, Liu D. [Isolation, cultivation and identification of adipose-derived stem cell in bovines]. Sheng Wu Gong Cheng Xue Bao. 2010 Dec;26(12):1645-51. Chinese. PMID: 21387826.
  27. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22(4):617-24. doi: 10.1634/stemcells.22-4-617. PMID: 15277707.
  28. Cardoso TC, Okamura LH, Baptistella JC, Gameiro R, Ferreira HL, Marinho M, Flores EF. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton's jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res. 2017 Feb;367(2):243-256. doi: 10.1007/s00441-016-2504-9. Epub 2016 Sep 27. PMID: 27677269.
  29. Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol. 2012 May 4;12:18. doi: 10.1186/1472-6750-12-18. PMID: 22559872; PMCID: PMC3443425.
  30. Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther. 2019 Jan 24;10(1):44. doi: 10.1186/s13287-019-1145-9. PMID: 30678726; PMCID: PMC6345009.
  31. Okamura LH, Cordero P, Palomino J, Parraguez VH, Torres CG, Peralta OA. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow. Anim Biotechnol. 2018 Jan 2;29(1):1-11. doi: 10.1080/10495398.2016.1276926. Epub 2017 Mar 7. PMID: 28267409.
  32. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg. 2002 Jan;109(1):199-209; discussion 210-1. doi: 10.1097/00006534-200201000-00030. PMID: 11786812.
  33. Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017 Feb 28;18(1):15. doi: 10.1186/s12860-017-0131-2. PMID: 28245809; PMCID: PMC5331627.
  34. Jiang T, Xu G, Wang Q, Yang L, Zheng L, Zhao J, Zhang X. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis. 2017 Jun 1;8(6):e2851. doi: 10.1038/cddis.2017.215. Erratum in: Cell Death Dis. 2019 Sep 26;10(10):716. PMID: 28569773; PMCID: PMC5520885.
  35. Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, Bunnell BA. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 2008 Jun 1;68(11):4229-38. doi: 10.1158/0008-5472.CAN-07-5272. PMID: 18519682; PMCID: PMC2713721.
  36. Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim YM, Ahn CM, Kong JH, Kim HS, Shim KY. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2014 Feb 28;445(1):16-22. doi: 10.1016/j.bbrc.2014.01.084. Epub 2014 Feb 1. PMID: 24491556.
  37. Rakian R, Block TJ, Johnson SM, Marinkovic M, Wu J, Dai Q, Dean DD, Chen XD. Native extracellular matrix preserves mesenchymal stem cell "stemness" and differentiation potential under serum-free culture conditions. Stem Cell Res Ther. 2015 Dec 1;6:235. doi: 10.1186/s13287-015-0235-6. PMID: 26620283; PMCID: PMC4666167.
  38. Mao Y, Hoffman T, Wu A, Goyal R, Kohn J. Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds. J Mater Sci Mater Med. 2017 Jul;28(7):100. doi: 10.1007/s10856-017-5912-9. Epub 2017 May 22. PMID: 28534283; PMCID: PMC5440495.
  39. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76. doi: 10.1016/j.cell.2006.07.024. Epub 2006 Aug 10. PMID: 16904174.
  40. van der Wal E, Herrero-Hernandez P, Wan R, Broeders M, In 't Groen SLM, van Gestel TJM, van IJcken WFJ, Cheung TH, van der Ploeg AT, Schaaf GJ, Pijnappel WWMP. Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies. Stem Cell Reports. 2018 Jun 5;10(6):1975-1990. doi: 10.1016/j.stemcr.2018.04.002. Epub 2018 May 3. PMID: 29731431; PMCID: PMC5993675.
  41. Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. Elife. 2013 Sep 3;2:e00036. doi: 10.7554/eLife.00036. PMID: 24015354; PMCID: PMC3762186.
  42. Ito N, Kii I, Shimizu N, Tanaka H, Takeda S. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Sci Rep. 2017 Aug 14;7(1):8097. doi: 10.1038/s41598-017-08232-2. Erratum in: Sci Rep. 2018 Apr 25;8(1):6733. Erratum in: Sci Rep. 2018 Jun 7;8(1):8991. PMID: 28808339; PMCID: PMC5556026.
  43. Prasad A, Teh DB, Shah Jahan FR, Manivannan J, Chua SM, All AH. Direct Conversion Through Trans-Differentiation: Efficacy and Safety. Stem Cells Dev. 2017 Feb 1;26(3):154-165. doi: 10.1089/scd.2016.0174. Epub 2016 Dec 19. PMID: 27796171.
  44. Fish KD, Rubio NR, Stout AJ, Yuen JSK, Kaplan DL. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci Technol. 2020 Apr;98:53-67. doi: 10.1016/j.tifs.2020.02.005. Epub 2020 Feb 11. PMID: 32123465; PMCID: PMC7051019.
  45. Fraeye I, Kratka M, Vandenburgh H, Thorrez L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front Nutr. 2020 Mar 24;7:35. doi: 10.3389/fnut.2020.00035. PMID: 32266282; PMCID: PMC7105824.
  46. Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Reassessment of adipocyte technology for cellular agriculture of alternative fat. Compr Rev Food Sci Food Saf. 2022 Sep;21(5):4146-4163. doi: 10.1111/1541-4337.13021. Epub 2022 Aug 26. PMID: 36018497.
  47. Frank D, Joo ST, Warner R. Consumer Acceptability of Intramuscular Fat. Korean J Food Sci Anim Resour. 2016;36(6):699-708. doi: 10.5851/kosfa.2016.36.6.699. Epub 2016 Dec 31. PMID: 28115880; PMCID: PMC5243953.
  48. Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat. Trends Biotechnol. 2022 Sep 15:S0167-7799(22)00223-2. doi: 10.1016/j.tibtech.2022.08.005. Epub ahead of print. PMID: 36117023.
  49. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008 Apr;78(4):343-58. doi: 10.1016/j.meatsci.2007.07.019. Epub 2007 Jul 21. PMID: 22062452.
  50. Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, Mei A, Hueber R, Mitic R, Remmers D, Moutsatsou P, Post MJ, Jackisch L, Flack JE. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Sci Food. 2022 Jan 24;6(1):6. doi: 10.1038/s41538-021-00122-2. PMID: 35075125; PMCID: PMC8786866.
  51. Torii SI, Kawada T, Matsuda K, Matsui T, Ishihara T, Yano H. Thiazolidinedione induces the adipose differentiation of fibroblast-like cells resident within bovine skeletal muscle. Cell Biol Int. 1998;22(6):421-7. doi: 10.1006/cbir.1998.0270. PMID: 10328850.
  52. Wosczyna MN, Perez Carbajal EE, Wagner MW, Paredes S, Konishi CT, Liu L, Wang TT, Walsh RA, Gan Q, Morrissey CS, Rando TA. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell. 2021 Jul 1;28(7):1323-1334.e8. doi: 10.1016/j.stem.2021.04.008. Epub 2021 May 3. PMID: 33945794; PMCID: PMC8254802.
  53. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1226-31. doi: 10.1073/pnas.0711402105. Epub 2008 Jan 22. PMID: 18212116; PMCID: PMC2234120.
  54. Liu Y, Jiang B, Fu C, Hao R. Cloning and characterization of adipogenin and its overexpression enhances fat accumulation of bovine myosatellite cells. Gene. 2017 Feb 15;601:27-35. doi: 10.1016/j.gene.2016.11.040. Epub 2016 Dec 1. PMID: 27914980.
  55. Li XZ, Yan Y, Zhang JF, Sun JF, Sun B, Yan CG, Choi SH, Johnson BJ, Kim JK, Smith SB. Oleic acid in the absence of a PPARγ agonist increases adipogenic gene expression in bovine muscle satellite cells1. J Anim Sci. 2019 Oct 3;97(10):4114-4123. doi: 10.1093/jas/skz269. PMID: 31424542; PMCID: PMC6776314.
  56. Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2011 Oct;20(10):1793-804. doi: 10.1089/scd.2011.0040. Epub 2011 Jun 20. PMID: 21526925; PMCID: PMC3182038.
  57. Mehta F, Theunissen R, Post MJ. Adipogenesis from Bovine Precursors. Methods Mol Biol. 2019;1889:111-125. doi: 10.1007/978-1-4939-8897-6_8. PMID: 30367412.
  58. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012 Feb;53(2):227-46. doi: 10.1194/jlr.R021089. Epub 2011 Dec 2. PMID: 22140268; PMCID: PMC3269153.
  59. Ong WK, Sugii S. Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol. 2013 Jun;45(6):1083-6. doi: 10.1016/j.biocel.2013.02.013. Epub 2013 Mar 1. PMID: 23458962.
  60. Yin J, Jin X, Beck S, Kang DH, Hong Z, Li Z, Jin Y, Zhang Q, Choi YJ, Kim SC, Kim H. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. Biotechnol Lett. 2010 Feb;32(2):195-202. doi: 10.1007/s10529-009-0142-y. Epub 2009 Oct 16. PMID: 19834648.
  61. Stanton MM, Tzatzalos E, Donne M, Kolundzic N, Helgason I, Ilic D. Prospects for the Use of Induced Pluripotent Stem Cells in Animal Conservation and Environmental Protection. Stem Cells Transl Med. 2019 Jan;8(1):7-13. doi: 10.1002/sctm.18-0047. Epub 2018 Sep 24. PMID: 30251393; PMCID: PMC6312526.
  62. Yuen JSK Jr, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials. 2022 Jan;280:121273. doi: 10.1016/j.biomaterials.2021.121273. Epub 2021 Nov 29. PMID: 34933254; PMCID: PMC8725203.
  63. Xu W, Li H, Peng L, Pu L, Xiang S, Li Y, Tao L, Liu W, Liu J, Xiao Y, Liu S. Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Front Cell Dev Biol. 2022 Jan 20;9:817779. doi: 10.3389/fcell.2021.817779. PMID: 35127728; PMCID: PMC8811452.
  64. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008 May 21;3(5):e2213. doi: 10.1371/journal.pone.0002213. PMID: 18493317; PMCID: PMC2374903.
  65. Ben-Arye T, Levenberg S. Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems. 2019;3.
  66. Bomkamp C, Skaalure SC, Fernando GF, Ben-Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Adv Sci (Weinh). 2022 Jan;9(3):e2102908. doi: 10.1002/advs.202102908. Epub 2021 Nov 16. PMID: 34786874; PMCID: PMC8787436.
  67. Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu JA, Bryant CJ, Negowetti N, Verzijden K, Moutsatsou P. Scientific, sustainability and regulatory challenges of cultured meat. Nat Food. 2020;1(7):403-415.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search