Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Using ECG Signals in Siamese Networks for Authentication in Digital Healthcare Systems

General Science    Start Submission

Pouria Behrouzi, Bahareh Shirkani and Mehdi Hazratifard*

Volume3-Issue11
Dates: Received: 2022-11-11 | Accepted: 2022-11-21 | Published: 2022-11-22
Pages: 1367-1373

Abstract

In digital healthcare systems, with digitalization, data can be easily accessed. Considering the sensitivity of confidential information, the need for security is accelerated during this time. One of the most important security aspects is authentication which should be utilized. The available authentication models that rely on Machine Learning (ML) have some shortcomings, such as difficulties in appending new users to the system or model training sensitivity to imbalanced data. To address these problems, we propose an application of the Siamese networks using ECG signals which are easily reachable in digital healthcare systems. Adding some preprocessing for feature extraction in such a model could lead us to prominent results. This model is performed on ECD-ID and PTB datasets and approaches 92% and 95% of accuracy, respectively. A combination of simplicity and high performance made it an exclusive choice for smart healthcare and telehealth.

FullText HTML FullText PDF DOI: 10.37871/jbres1605


Certificate of Publication




Copyright

© 2022 Behrouzi P, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Behrouzi P, Shirkani B, Hazratifard M. Using ECG Signals in Siamese Networks for Authentication in Digital Healthcare Systems. 2022 Nov 22; 3(11): 1367-1373. doi: 10.37871/jbres1605, Article ID: JBRES1605, Available at: https://www.jelsciences.com/articles/jbres1605.pdf


Subject area(s)

References


  1. Koonin LM, Hoots B, Tsang CA, Leroy Z, Farris K, Tilman JB, Antall P, McCabe B, Zelis CBR, Tong I, Harris AM. Trends in the use of telehealth during the emergence of the COVID-19 pandemic - United States. CDC. 2020.
  2. Theodos K, Sittig S. Health information privacy laws in the digital age: HIPAA doesn’t apply. 2021.
  3. Liebl A. Authentication in distributed systems: A bibliography. ACM SIGOPS Operating Systems Review. 1993;27:31-41. doi: 10.1145/163640.163643.
  4. Shacklett ME. Authentication 2022.
  5. Cvetkovic D, Ãœbeyli ED, Cosic I. Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study. Digital Signal Processing. 2008;18:861-874. doi: 10.1016/j.dsp.2007.05.009.
  6. Hazratifard M, Gebali F, Mamun M. Using machine learning for dynamic authentication in telehealth: A tutorial. Sensors. 2022;22:7655. doi: 10.3390/ s22197655.
  7. Hazrati Fard SM, Hashemi S. Sparse representation using deep learning to classify multi-class complex data. Iranian Journal of Science and Technology - Transactions of Electrical Engineering. 2019;43. doi: 10.1007/s40998-018-0154-5.
  8. Hazrati Fard SM, Hashemi S. Employing deep learning and sparse representation for data classification. AISP. 2017. doi: 10.1109/AISP.2017.8324099.
  9. Badr W. Auto-Encoder: What is it? And what is it used for? 2019.
  10. Shrivastava P. Challenges in deep learning. 2017.
  11. Benhur S. A friendly introduction to Siamese networks. 2020.
  12. Zhong D, Yang Y, Du X. Palmprint recognition using Siamese network. In: Chinese Conf Biometric Recognit. 2018;48-55. doi: 10.1007/978-3-319-97909-0_6.
  13. Hamad RA, Kimura M, Lundström J. Efficacy of imbalanced data handling methods on deep learning for smart homes environments. SN Comput Sci. 2020;1:1-10. doi: 10.1007/s42979-020-00211-1.
  14. Dutt A. Siamese Networks Introduction and Implementation. 2021.
  15. Pereira Coutinho D, Silva H, Gamboa H, Fred A, Figueiredo M. Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems. IET Biometrics. 2013;2:64-75. doi: 10.1049/iet-bmt.2012.0055.
  16. Kumar AK, Ritam M, Han L, Guo S, Chandra R. Deep learning for predicting respiratory rate from biosignals. Comput. Biol. Med. 2022;144:105338. doi: 10.1016/j.compbiomed.2022.105338.
  17. Saha S. A comprehensive guide to convolutional neural networks - The ELI5 way. 2018.
  18. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging. 2018;9:611-629. doi: 10.1007/s13244-018-0639-9.
  19. Saha S. A Gentle Introduction to Long Short-Term Memory Networks by the Experts. 2017.
  20. Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. IEEE Int Conf Acoust Speech Signal Process. 2013;6645-6649. doi: 10.1109/ICASSP.2013.6638947.
  21. Kim BH, Pyun JY. ECG identification for personal authentication using LSTM-based deep recurrent neural networks. Sensors. 2020;20:3069. doi: 10.3390/s20113069.
  22. Tirado-Martin P, Sanchez-Reillo R. BioECG: Improving ECG biometrics with deep learning and enhanced datasets. Appl. Sci. 2021;11:5880. doi: 10.3390/app11135880.
  23. Ibtehaz N, Chowdhury MEH, Khandakar A, Kiranyaz S, Rahman MS, Tahir A, Qiblawey Y, Rahman T. EDITH: ECG biometrics aided by Deep learning for reliable Individual authentication. IEEE Trans Emerg Top Comput Intell. 2021. doi: 10.1109/TETCI.2021.3131374.
  24. Ivanciu L, Ivanciu IA, Farago P, Roman M, Hintea S. An ECG-based authentication system using Siamese neural networks. J Med Biol Eng. 2021;41:558-570. doi: 10.1007/s40846-021-00637-9.
  25. Weisstein EW. Fourier Series (n.d.).
  26. Kumar MA, Chakrapani A. Classification of ECG signal using FFT based improved Alexnet classifier. PLoS One. 2022;17:e0274225. doi: 10.1371/journal.pone.0274225.
  27. Prasad BVP, Parthasarathy V. Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm. Biotechnol & Biotechnol Equip. 2018;32:183-193. doi: 10.1080/13102818.2017.1389303.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search