Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Characterization of PM2.5 in Coastal Urban Area, Northwest Morocco: Seasonal Variations, Elemental Composition and Source Apportionment

Environmental Sciences    Start Submission

Mounia Tahri*, Abdelfettah Benchrif, Moussa Bounakhla and Fatiha Zahry

Volume3-Issue11
Dates: Received: 2022-11-09 | Accepted: 2022-11-18 | Published: 2022-11-21
Pages: 1337-1352

Abstract

Sale, located along the Atlantic Ocean, is the third-largest city in Morocco. The Bouregreg river separates Sale from Rabat (Morocco’s capital city). This City is characterized by a high demographic density. Their main air pollution sources are traffic, ocean, potteries, fishing, domestic heating, and artisanal activities. Ambient PM2.5 particles were collected in an urban area of Sale City (Morocco) from July 2018 to July 2019. The sampling was carried out using a Dichotomous sampler and the Total X-Ray Fluorescence technique (TXRF) was used to evaluate the elemental composition of the collected filters. In this paper, chemical characterization, and source apportionment of PM2.5 were investigated. The results showed that the PM2.5 mass concentrations vary, during the sampling period, from 3.08 µg/m3 to 49.48 µg/m3 with an average of 17.30 µg/m3. The highest values were observed in winter while the lowest in summer. The influence of atmospheric transport scenarios on the levels of PM was carried out using air mass back-trajectories, using the HYSPLIT™ model. This study allowed identifying four main clusters arriving at our receptor site in Sale City: Iberian Coast (24%), Near Atlantic Ocean (33%), Local (28%), and Oceanic (15%). For seasonal variations of metal concentrations, K, Ca, V, Mn, Fe, Ni, Cu, Zn, As, Sr, Ba, and Pb exhibited their highest concentrations during winter while Ti and Cr, their highest concentrations were observed during Autumn. The Enrichment Factor (EF) analysis showed that Ti, Sr, Mn, K, Ca, and Ba are mainly originated from airborne dust with EF < 10, V, Cu, Cr have both natural and anthropogenic sources with 10 < EF < 100, while Ni, Zn, and Pb were mainly from anthropogenic source with EF > 100. Five factors were selected in Positive Matrix Factorization (PMF) model’s analysis: crustal contribution, road dust, brake wear, heavy oil combustion, and exhaust vehicle emissions. Their contributions to PM2.5 were 5%, 53.6%, 20.1%, 14.3% and 7%, respectively. Road dust and vehicle exhaust sources showed the highest contribution in winter; while soil dust, brake wear, and oil combustion sources contributed the most in summer. The present study could be considered as the first source apportionment study on PM2.5 fractions carried out in Sale City, Morocco.

FullText HTML FullText PDF DOI: 10.37871/jbres1602


Certificate of Publication




Copyright

© 2022 Tahri M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tahri M, Benchrif A, Bounakhla M, Zahry F. Characterization of PM2.5 in Coastal Urban Area, Northwest Morocco: Seasonal Variations, Elemental Composition and Source Apportionment. 2022 Nov 21; 3(11): 1337-1352. doi: 10.37871/jbres1602, Article ID: JBRES1602, Available at: https://www.jelsciences.com/articles/jbres1602.pdf


Subject area(s)

References


  1. Health Effects Institute. State of Global Air. Special Report. Boston, MA: Health Effects Institute; 2020.
  2. World Health Organization. WHO’s Urban Ambient Air Pollution Database-Update. 2016.
  3. Wang J, Xing J, Mathur R, Pleim JE, Wang S, Hogrefe C, Gan CM, Wong DC, Hao J. Historical Trends in PM2.5-Related Premature Mortality during 1990-2010 across the Northern Hemisphere. Environ Health Perspect. 2017 Mar;125(3):400-408. doi: 10.1289/EHP298. Epub 2016 Aug 19. PMID: 27539607; PMCID: PMC5332185.
  4. Li J, Liu H, Lv Z, Zhao R, Deng F, Wang C, Qin A, Yang X. Estimation of PM2.5 mortality burden in China with new exposure estimation and local concentration-response function. Environ Pollut. 2018 Dec;243(Pt B):1710-1718. doi: 10.1016/j.envpol.2018.09.089. Epub 2018 Sep 21. PMID: 30408858.
  5. Gadi R, Shivani, Sharma SK, Mandal TK. Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India. Chemosphere. 2019 Apr;221:583-596. doi: 10.1016/j.chemosphere.2019.01.067. Epub 2019 Jan 10. PMID: 30665088.
  6. Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J. 2019 May 21;40(20):1590-1596. doi: 10.1093/eurheartj/ehz135. PMID: 30860255; PMCID: PMC6528157.
  7. Shivani, Gadi R, Sharma SK, Mandal TK. Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere. 2019 Dec;237:124500. doi: 10.1016/j.chemosphere.2019.124500. Epub 2019 Jul 31. PMID: 31549639.
  8. Sharma SK, Mandal TK, Jain S, Saraswati, Sharma A, Saxena M. Source Apportionment of PM2.5 in Delhi, India Using PMF Model. Bull Environ Contam Toxicol. 2016 Aug;97(2):286-93. doi: 10.1007/s00128-016-1836-1. Epub 2016 May 21. PMID: 27209541.
  9. Li J, Han X, Jin M, Zhang X, Wang S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population's PM2.5 exposure from 1998 to 2016. Environ Int. 2019 Jul;128:46-62. doi: 10.1016/j.envint.2019.04.026. Epub 2019 Apr 25. PMID: 31029979.
  10. Lu HY, Wu YL, Mutuku JK, Chang KH. Various sources of PM2.5 and their impact on the air quality in Tainan city, Taiwan. Aerosol and Air Quality Research. 2019;19(3):601-619. doi: 10.4209/aaqr.2019.01.0024.
  11. Yuan M, Song Y, Huang Y, Shen H, Li T. Exploring the association between the built environment and remotely sensed PM2.5 concentrations in urban areas. Journal of Cleaner Production. 2019;220:1014-1023. doi: 10.1016/j.jclepro.2019.02.236.
  12. Yue H, Huang Q, He C, Zhang X, Fang Z. Spatiotemporal patterns of global air pollution: A multi-scale landscape analysis based on dust and sea-salt removed PM2.5 data. Journal of Cleaner Production. 2020;252:119887. doi: 10.1016/j.jclepro.2019.119887.
  13. Jain S, Sharma SK, Srivastava MK, Chatterjee A, Vijayan N, Tripathy SS, Kumari KM, Mandal TK, Sharma C. Chemical characterization, source apportionment and transport pathways of PM2.5 and PM10 over Indo Gangetic Plain of India. Urban Climate. 2021a;36:100805. doi: 10.1016/j.uclim.2021.100805.
  14. Jain S, Sharma SK, Vijayan N, Mandal TK. Investigating the seasonal variability in source contribution to PM2.5 and PM10 using different receptor models during 2013-2016 in Delhi, India. Environ Sci Pollut Res Int. 2021 Jan;28(4):4660-4675. doi: 10.1007/s11356-020-10645-y. Epub 2020 Sep 18. PMID: 32946053.
  15. United Nations Economic Commission for Europe, UNECE. Environmental Performance Review of Morocco (Second Review).
  16. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1345-1422. doi: 10.1016/S0140-6736(17)32366-8. Erratum in: Lancet. 2017 Oct 14;390(10104):1736. Erratum in: Lancet. 2017 Oct 28;390(10106):e38. PMID: 28919119; PMCID: PMC5614451.
  17. Croitoru L, Sarraf M. The cost of degradation of the environment in Morocco : Le Coût de la Dégradation de l’Environnement au Maroc (French). Environment and Natural Resources Global Practice Discussion Paper, no.5 Washington, D.C. World Bank Group. 2017.
  18. Ait Bouh H, Benyaich F, Bounakhla M, Noack Y, Tahri M, Zahry F. Seasonal variations of the atmospheric particles, and its chemical components in meknes City-Morocco. Journal of Materials and Environmental Science. 2013;4(1):49-62.
  19. Ait Bouh H, Benyaich F, Noack Y, Bounakhla M, Tahri M. Physical and chemical characterization of suspended atmospheric particles and source identification in town of Meknes in Morocco. Journal of Materials & Environment Science. 2012;3(3):434-445.
  20. Tahri M, Bounakhla M, Zghaïd M Benchrif A, Zahry F, Noack Y, Benyaïch F. TXRF characterization and source identification by positive matrix factorization of airborne particulate matter sampled in Kenitra City (Morocco). X-Ray Spectrometry Journal. 2013;42(4):284-289. doi: 10.1002/xrs.2484.
  21. Elass K, Eddaif A, Radey O, Aitzaouit O, Yakoubi ME, Chelhaoui Y. Effect of restricted emissions during COVID-19 lockdown on air quality in Rabat – Morocco. Global NEST Journal. 2020;22(3):348-353. doi: 10.30955/gnj.003431.
  22. Khomsi K, Najmi H, Amghar H, Chelhaoui Y, Souhaili Z. COVID-19 national lockdown in morocco: Impacts on air quality and public health. One Health. 2021 Jun;11:100200. doi: 10.1016/j.onehlt.2020.100200. Epub 2020 Nov 25. PMID: 33263072; PMCID: PMC7687492.
  23. Otmani A, Benchrif A, Tahri M, Bounakhla M, Chakir EM, El Bouch M, Krombi M. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci Total Environ. 2020 Sep 15;735:139541. doi: 10.1016/j.scitotenv.2020.139541. Epub 2020 May 19. PMID: 32445829; PMCID: PMC7235599.
  24. Clyde WS. Standard operating procedure for air sampling for metals using the dichotomous sampler, Illinois State Water Survey. Office of Air Quality. 1993;1.
  25. Draxler RR, Hess GD. Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring; MD. 1997. p.24.
  26. Draxler RR, Hess GD. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteor Mag. 1998;47:295-308.
  27. Draxler RR. HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring; MD. 1999.
  28. Stein AF, Draxler RR, Rolph GD, Stunder BJB., Cohen MD, Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society. 2015;96:2059-2077. doi: 10.1175/BAMS-D-14-00110.1.
  29. Yuan G, Sun P, Zhao J, Li D, Wang C. A review of moving object trajectory clustering algorithms. Artificial Intelligence Review. 2016;47:123-144. doi: 10.1007/s10462-016-9477-7.
  30. Dodd JA, Ondov JM, Tuncel G Dzubay, TG, Stevens RK. Multimodal size spectra of submicrometer particles bearing various elements in rural air. Environmental Science & Technology. 1991;25:890-903. doi: 10.1021/es00017a010.
  31. Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X. Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmospheric Pollution Research. 2015;6(5):742-750. doi: 10.5094/APR.2015.083.
  32. Liang L, Liu N, Landis MS, Xu X, Feng X, Chen Z, Shang L, Qiu G. Chemical characterization and sources of PM2.5 at 12-hr resolution in Guiyang, China. Acta Geochimica. 2018;37(2):334-345. doi: 10.1007/s11631-017-0248-1. PMID: 31632828; PMCID: PMC6800720.
  33. Lin Y, Wang J. Concentrations, enrichment, and sources of metals in PM2.5 in Beijing during winter. Air Quality, Atmosphere & Health. 2020;13:5-14. doi: 10.1007/s11869-019-00763-z.
  34. Abulude FO, Abulude IA, Ezeh GC, Acha S. Source identification and pollution factors of elements in PM2.5 samples obtained in Akure, Ondo State, Nigeria. Research Square. 2021. doi: 10.21203/rs.3.rs-337775/v1.
  35. Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics. 1994;5(2):111-126. doi: 10.1002/env.3170050203.
  36. Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems. 1997;37:23-35. doi: 10.1016/S0169-7439(96)00044-5.
  37. Gupta I, Salunkhe A, Kumar R. Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India. ScientificWorldJournal. 2012;2012:585791. doi: 10.1100/2012/585791. Epub 2012 May 3. PMID: 22645437; PMCID: PMC3356722.
  38. Pokorná P, Hovorka J, Krouzek J, Hopke PK. Particulate matter source apportionment in a village situated in industrial region of Central Europe. J Air Waste Manag Assoc. 2013 Dec;63(12):1412-21. doi: 10.1080/10962247.2013.825215. PMID: 24558704.
  39. Banerjee T, Murari V, Kumar K, Raju MP. Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmospheric Research. 2015;164-165:167-187. doi: 10.1016/j.atmosres.2015.04.017.
  40. Fernández-Olmo I, Andecochea C, Ruiz S, Fernández-Ferreras JA, Irabien A. Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances. Atmospheric Research. 2016;171:92-106. doi: 10.1016/j.atmosres.2015.12.010.
  41. Tan JH, Duan JC, Chai FH, He KB, Hao JM. Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmospheric Research. 2014;139:90-100. doi: 10.1016/j.atmosres.2014.01.007.
  42. Paatero P, Hopke PK, Song XH, Ramadan Z. Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems. 2022;60:253-264. doi: 10.1016/S0169-7439(01)00200-3.
  43. Paatero P, Hopke PK. Discarding or down weighting high-noise- variables in factor analysis models. Analytica Chimica Acta. 2003; 490:277-289. doi: 10.1016/S0003-2670(02)01643-4.
  44. Lee E, Chan CK, Paatero P. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment. 1999;33:3201-3212. doi: 10.1016/S1352-2310(99)00113-2.
  45. World Health Organization. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. World Health Organization. 2021.
  46. Hu M, Liu S, Wu ZJ, Zhang J, Zhao YL, Wehner B, Wiedensolher A. [Effects of high temperature, high relative humidity and rain process on particle size distributions in the summer of Beijing]. Huan Jing Ke Xue. 2006 Nov;27(11):2293-8. Chinese. PMID: 17326443.
  47. Wang X, Bi X, Sheng G, Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess. 2006 Aug;119(1-3):425-39. doi: 10.1007/s10661-005-9034-3. Epub 2006 Jun 2. PMID: 16741816.
  48. Cesari D, De Benedetto GE, Bonasoni P, Busetto M, Dinoi A, Merico E, Chirizzi D, Cristofanelli P, Donateo A, Grasso FM, Marinoni A, Pennetta A, Contini D. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci Total Environ. 2018 Jan 15;612:202-213. doi: 10.1016/j.scitotenv.2017.08.230. Epub 2017 Sep 1. PMID: 28850839.
  49. Godish T, Davis WT, Fu JS. Air Quality, 5th ed. London: CRC Press; 2015. doi: 10.1201/b17341.
  50. USEPA (United States Environmental Protection Agency). Data Quality Assessment: Statistical Methods for Practitioners. EPA QA/G-9S, Office of Environmental Information Washington, 2006, DC 20460.
  51. Wang J, Ogawa S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int J Environ Res Public Health. 2015 Aug 3;12(8):9089-101. doi: 10.3390/ijerph120809089. PMID: 26247953; PMCID: PMC4555266.
  52. Kayes I, Shahriar SA, Hasan K, Akhter M, Kabir MM, Salam MA. The relationships between meteorological parameters and air pollutants in an Urban Environment. Global Journal of Environmental Science and Management. 2019;5(3):265-278. doi: 10.22034/gjesm.2019.03.01.
  53. Tian S, Pan Y, Liu Z, Wen T, Wang Y. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. J Hazard Mater. 2014 Aug 30;279:452-60. doi: 10.1016/j.jhazmat.2014.07.023. Epub 2014 Jul 21. PMID: 25106045.
  54. Zhang H, Wang Y, Hu J, Ying Q, Hu XM. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ Res. 2015 Jul;140:242-54. doi: 10.1016/j.envres.2015.04.004. Epub 2015 Apr 13. PMID: 25880606.
  55. Ding Y, Liu Y. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Science China Earth Sciences. 2014;57:36-46. doi: 10.1007/s11430-013-4792-1.
  56. Liu R, Wang M, Chen W, Peng C. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ Pollut. 2016 Mar;210:174-81. doi: 10.1016/j.envpol.2015.11.044. Epub 2015 Dec 21. PMID: 26716731.
  57. Gao J, Tian H, Cheng K, Lu L, Zheng M, Wang S, Hao J, Wang K, Hua S, Zhu C. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmospheric Environment. 2015;107:1-8. doi: 10.1016/j.atmosenv.2015.02.022.
  58. Lin, GY, Lee GR, Lin SF, Hung YH, Li SW, Wu GJ, Ye H, Huang W, Tsai CJ. Ultrafine particles and PM2.5 at three urban air monitoring stations in northern Taiwan from 2011 to 2013. Aerosol and Air Quality Research. 2015;15:2305-2319. doi: 10.4209/aaqr.2015.04.0271.
  59. Hernández-Mena L, Murillo-Tovar M, Ramírez-Muñíz M, Colunga-Urbina E, de la Garza-Rodríguez I, Saldarriaga-Noreña H. Enrichment Factor and profiles of elemental composition of PM 2.5 in the city of Guadalajara, Mexico. Bull Environ Contam Toxicol. 2011 Nov;87(5):545-9. doi: 10.1007/s00128-011-0369-x. Epub 2011 Aug 12. PMID: 21837390.
  60. Almeida-Silva M, Almeida SM, Freitas MC, Pio CA, Nunes T, Cardoso J. Impact of Sahara dust transport on Cape Verde atmospheric element particles. J Toxicol Environ Health A. 2013;76(4-5):240-51. doi: 10.1080/15287394.2013.757200. PMID: 23514066.
  61. Calvo AI, Alves A, Pont V, Vicente AM, Fraile R. Research on aerosol sources and chemical composition: Past, current, and emerging issues. Atmospheric Research. 2013;120-121:1-28. doi: 10.1016/j.atmosres.2012.09.021.
  62. Bressi M, Sciare J, Ghersi V, Mihalopoulos N, Petit JE, Nicolas JB, Moukhtar S, Rosso A, Feron A, Bonnaire N, Poulakis E, Theodosi C. Sources, and geographical origins of fine aerosols in Paris (France). Atmospheric Chemistry and Physics. 2014;14:8813-8839. doi: 10.5194/acp-14-8813-2014.
  63. Keuken M, Denier van der Gon H, van der Valk K. Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Sci Total Environ. 2010 Sep 15;408(20):4591-9. doi: 10.1016/j.scitotenv.2010.06.052. Epub 2010 Jul 11. PMID: 20627203.
  64. Grigoratos T, Martini G. Brake wear particle emissions: a review. Environ Sci Pollut Res Int. 2015 Feb;22(4):2491-504. doi: 10.1007/s11356-014-3696-8. Epub 2014 Oct 17. PMID: 25318420; PMCID: PMC4315878.
  65. Jang HN Seo YC, Lee .H, Hwang KW, Yoo JI, Sok CH, Kim SH. Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments. Atmospheric Environment. 2007;41(5):1053-1063. doi: 10.1016/J.ATMOSENV.2006.09.011.
  66. Becagli S, Sferlazzo DM, Pace G, Di Sarra A, Bommarito C, Calzolai G, Ghedini C, Lucarelli F, Meloni D, Monteleone F, Severi M, Traversi R, Udisti R. Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: A possible large role of ships emissions in the Mediterranean. Atmospheric Chemistry and Physics. 2012;12(7):3479. doi: 10.5194/acp-12-3479-2012.
  67. Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, de Vlieger I, Aardenne J. Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment. 2014;90:96-105. doi: 10.1016/j.atmosenv.2014.03.046.
  68. Lee HJ, Gent JF, Leaderer BP, Koutrakis P. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts. Sci Total Environ. 2011 May 1;409(11):2133-42. doi: 10.1016/j.scitotenv.2011.02.025. Epub 2011 Mar 22. PMID: 21429560; PMCID: PMC3269973.
  69. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen LC, Maciejczyk P. Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res. 2012 Jul 1;3(3):331-340. doi: 10.5094/apr.2012.037. PMID: 24634602; PMCID: PMC3951168.
  70. Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J. Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research .2013;13:574-583. doi: 10.4209/aaqr.2012.07.0192.
  71. Khan JZ, Sun L, Tian Y, Shi G, Feng Y. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J Environ Sci (China). 2021 Jan;99:196-209. doi: 10.1016/j.jes.2020.06.027. Epub 2020 Jul 7. PMID: 33183697.
  72. Liao HT, Chou CC, Chow JC, Watson JG, Hopke PK, Wu CF. Source and risk apportionment of selected VOCs and PM₂.₅ species using partially constrained receptor models with multiple time resolution data. Environ Pollut. 2015 Oct;205:121-30. doi: 10.1016/j.envpol.2015.05.035. Epub 2015 Jun 6. PMID: 26057474.
  73. Lang J, Zhou Y, Chen D, Xing X, Wei L, Wang X, Zhao N, Zhang Y, Guo X, Han L, Cheng S. Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach. Environ Pollut. 2017 Oct;229:557-566. doi: 10.1016/j.envpol.2017.06.087. Epub 2017 Jul 6. PMID: 28688306.
  74. Lough GC, Schauer JJ, Park JS, Shafer MM, Deminter JT, Weinstein JP. Emissions of metals associated with motor vehicle roadways. Environ Sci Technol. 2005 Feb 1;39(3):826-36. doi: 10.1021/es048715f. PMID: 15757346.
  75. Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment. 2011;45:4180-4191. doi: 10.1016/j.atmosenv.2011.05.017.
  76. Pacyna, J.M. Source Inventories for Atmospheric Trace Metals. In: Harrison RM, van Grieken RE, editors. Atmospheric Particles, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Chichester: Wiley; 1998;5:385-423.
  77. Xu HM, Cao JJ, Ho KF, Ding H, Han YM, Wang GH, Chow JC, Watson JG, Khol SD, Qiang J, Li WT. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmospheric Environment. 2012;46:217-224. doi: 10.1016/j.atmosenv.2011.09.078.
  78. Inchaouh M, Tahiri M. Air Pollution due to road transportation in Morocco: Evolution and impacts. Journal of Multidisciplinary Engineering Science and Technology. 2017;4(6):7547‐7553.
  79. Karagulian F, Belis CA, Dora CFC, Prüss-Ustün A., Bonjour S, Adair-Rohani H, Amann M. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. 2015;120:475-483. doi: 10.1016/j.atmosenv.2015.08.087.
  80. Hopke PK, Dai Q, Li L, Feng Y. Global review of recent source apportionments for airborne particulate matter. Sci Total Environ. 2020 Oct 20;740:140091. doi: 10.1016/j.scitotenv.2020.140091. Epub 2020 Jun 9. PMID: 32559544; PMCID: PMC7456793.
  81. Nava S, Calzolai G, Chiari M, Giannoni M, Giardi F, Becagli S, Severi M, Traversi R, Lucarelli F. Source apportionment of PM2.5 in Florence (Italy) by PMF analysis of aerosol composition records. Atmosphere. 2020;11(5):484. doi: 10.3390/atmos11050484.
  82. Taghvaee S, Sowlat MH, Mousavi A, Hassanvand MS, Yunesian M, Naddafi K, Sioutas C. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci Total Environ. 2018 Jul 1;628-629:672-686. doi: 10.1016/j.scitotenv.2018.02.096. Epub 2018 Feb 20. PMID: 29455128.
  83. Murillo JH, Román SR, Marín JF, Ramos AC, Jiménez SB, González BC, Baumgardner D. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research. 2013;4:181-190. doi: 10.5094/APR.2013.018.
  84. Nayebare SR, Aburizaiza OS, Khwaja HA, Siddique A, Hussain MM, Zeb J, Khatib F, Carpenter DO, Blake DR. Chemical characterization and source apportionment of PM2.5 in Rabigh, Saudi Arabia. Aerosol and Air Quality Research. 2016;16:3114-3129. doi: 10.4209/aaqr.2015.11.0658.
  85. Manousakas MI, Florou K, Pandis SN. Source Apportionment of fine organic and inorganic atmospheric aerosol in an urban background area in Greece. Atmosphere. 2020;11(4):330. doi: 10.3390/atmos11040330.
  86. Perrone MG, Vratolis S, Georgieva E, Török S, Šega K, Veleva B, Osán J, Bešlić I, Kertész Z, Pernigotti D, Eleftheriadis K, Belis CA. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci Total Environ. 2018 Apr 1;619-620:1515-1529. doi: 10.1016/j.scitotenv.2017.11.092. Epub 2017 Dec 11. PMID: 29734626; PMCID: PMC5821697.
  87. Li P, Sato K, Hasegawa H, Huo M, Minoura H, Inomata Y, Take N, Yuba A, Futami M, Takahashi T, Kotake Y. Chemical characteristics and source apportionment of PM2.5 and long-range transport from Northeast Asia Continent to Niigata in Eastern Japan. Aerosol and Air Quality Research. 2018;18:938-956. doi: 10.4209/aaqr.2017.05.0181.
  88. Gunchin G, Manousakas M, Osan J, Karydas AG, Eleftheriadis K, Lodoysamba S, Shagjjamba D, Migliori A, Padilla-Alvarez R, Streli C, Darby I. Three-year long source apportionment study of airborne particles in ulaanbaatar using X-ray fluorescence and positive matrix factorization. Aerosol and Air Quality Research. 2019;19:1056-1067. doi: 10.4209/aaqr.2018.09.0351.
  89. Gaita SM, Boman J, Gatari MJ, Pettersson JBC, Janhäll S. Source apportionment and seasonal variation of PM2.5 in a Sub-Saharan African city: Nairobi, Kenya. Atmospheric Chemistry and Physics. 2014;14:9977-9991. doi: 10.5194/acp-14-9977-2014.
  90. Ofosu FG, Hopke PK, Aboh IJK, Bamford SA. Characterization of fine particulate sources at ashaiman in Greater Accra, Ghana. Atmospheric Pollution Research. 2012;3:301-310. doi: 10.5094/APR.2012.033.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search