Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Research Progress on the Correlation between Hyperhomocysteinemia and Arteriosclerosis Obliteran

Medicine Group    Start Submission

Wang Ying Rui, Liu Zheng*, Li Hui Han, Liu Guo Yan and Wang Hongjie1

Volume3-Issue10
Dates: Received: 2022-10-05 | Accepted: 2022-10-13 | Published: 2022-10-27
Pages: 1257-1268

Abstract

Arteriosclerosis Obliteran (ASO) is a local manifestation of systemic arteriosclerosis in the lower extremity arteries. ASO is a chronic progressive disease caused by arteriosclerosis, such as intimal thickening, lumen stenosis or occlusion of the blood supply arteries of the lower limbs, insufficient blood supply of the diseased limbs, and clinical manifestations such as intermittent claudication, decreased skin temperature, pain, and even ulceration or necrosis of the lower limbs. Its pathogenesis is complex, the treatment is difficult and has gradually attracted extensive attention in clinic. In recent years, more and more studies have shown that hyperhomocysteinemia is an independent risk factor of atherosclerosis, but there is no clinical report on hyperhomocysteinemia and ASO. Therefore, this paper reviews the correlation between hyperhomocysteinemia and ASO, in order to provide theoretical basis and support for the follow-up study of ASO.

FullText HTML FullText PDF DOI: 10.37871/jbres1587


Certificate of Publication




Copyright

© 2022 Rui WY, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Rui WY, Zheng L, Han LH, Yan LG, Hongjie W. Research Progress on the Correlation between Hyperhomocysteinemia and Arteriosclerosis Obliteran. 2022 Oct 27; 3(10): 1257-1268. doi: 10.37871/jbres1587, Article ID: JBRES1587, Available at: https://www.jelsciences.com/articles/jbres1587.pdf


Subject area(s)

References


  1. Yayu L, Zhen W, Qingxia Q, Yiming W, Yinzhu C. Study on the relationship between smoking index and systemic atherosclerosis. Journal of Practical Cardio Cerebrovascular Diseases. 2020;28(9):61-66.
  2. Kianoush S, Yakoob MY, Al-Rifai M, DeFilippis AP, Bittencourt MS, Duncan BB, Bensenor IM, Bhatnagar A, Lotufo PA, Blaha MJ. Associations of Cigarette Smoking With Subclinical Inflammation and Atherosclerosis: ELSA-Brasil (The Brazilian Longitudinal Study of Adult Health). J Am Heart Assoc. 2017 Jun 24;6(6):e005088. doi: 10.1161/JAHA.116.005088. PMID: 28647689; PMCID: PMC5669156.
  3. Giebe S, Cockcroft N, Hewitt K, Brux M, Hofmann A, Morawietz H, Brunssen C. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function. Redox Biol. 2017 Aug;12:776-786. doi: 10.1016/j.redox.2017.04.008. Epub 2017 Apr 7. PMID: 28432984; PMCID: PMC5397582.
  4. Akagi D, Hoshina K, Akai A, Yamamoto K. Outcomes in Patients with Critical Limb Ischemia due to Arteriosclerosis Obliterans Who Did Not Undergo Arterial Reconstruction. Int Heart J. 2018 Sep 26;59(5):1041-1046. doi: 10.1536/ihj.17-592. Epub 2018 Aug 11. PMID: 30101855.
  5. Yongcheng X, Jia W. The value of peripheral vascular stent intervention in the treatment of lower extremity arteriosclerosis obliterans with foot gangrene in patients with diabetes. Journal of Practical Clinical Medicine. 2020;24(13):20-22.
  6. Min Y, Huisheng D. Study on risk factors of lower extremity arteriosclerosis obliterans in elderly patients with type 2 diabetes. Department of Chinese General Medicine. 2017;20(1):71-75.
  7. Yanhua Z, Haiyan R, Jiahe Z. Research progress of neutrophil/lymphocyte ratio in lower extremity arteriosclerosis obliterans. Chinese Journal of Modern Medicine. 2021;31(16):48-52.
  8. Hui W, Yongxing J, Ye T. Lower extremity arteriosclerosis obliterans: Research progress in inflammatory mechanism and anti-inflammatory treatment. Advances in Cardiology. 2020;41(2):179-182.
  9. Guidelines for diagnosis and treatment of arteriosclerosis obliterans of lower limbs. Chinese Journal of General Surgery. 2016;10(1):1-18.
  10. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969 Jul;56(1):111-28. PMID: 5792556; PMCID: PMC2013581.
  11. Wei Z, Zhichao L, Xindong W, Maowei Y. Interventional therapy combined with lateral tibial transfer in the treatment of lower extremity ischemic diseases. Chinese Journal of Orthopaedic Surgery. 2019;27(9):809-814.
  12. Junjun D, Jiacai H, Na Y. Clinical observation of compound Xueshuantong capsule in the treatment of lower extremity arteriosclerosis obliterans. Journal of Modern Integrated Traditional Chinese and Western Medicine. 2019;28(13):1421-1424.
  13. Jian W, Jie Z, Feipeng L. Study on the effect of interventional technology in the treatment of lower extremity arteriosclerosis obliterans. Chinese General Practice. 2019;22(S2):118-120.
  14. Quancheng L, Yufeng T, Bo Y, Shaofei S, Shisheng P, Weidong W. Effect analysis of endovascular superficial femoral artery reconstruction in the treatment of chronic lower extremity arteriosclerosis obliterans. Journal of Ningxia Medical University. 2020;42(2):190-193.
  15. Azizova TV, Bannikova MV, Grigorieva ES, Bagaeva YP, Azizova EV. Risk of lower extremity arterial disease in a cohort of workers occupationally exposed to ionizing radiation over a prolonged period. Radiat Environ Biophys. 2016 May;55(2):147-59. doi: 10.1007/s00411-016-0645-6. Epub 2016 Mar 19. PMID: 26994996.
  16. Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int J Mol Sci. 2019 Jan 8;20(1):231. doi: 10.3390/ijms20010231. PMID: 30626145; PMCID: PMC6337226.
  17. Ni L, Quqing K, Lingyan J, Lanzhi O, Diemei L, Yuyan W, Qingfeng D. Research progress of clinical application of homocysteine. Chinese General Medicine. 2021;19(8):1358-1361.
  18. Hongxia J, Yanhua Z, Shanshan L, Wen Y. Hyperhomocysteinemia and carotid atherosclerosis in the elderly. Chinese Journal of Gerontology. 2017;37(9):2336-2338.
  19. Shuzhen W, Hongsheng W, Lizhi W, Yingjie L. Pathogenesis and pathophysiological significance of hyperhomocysteinemia. Chinese Journal of brain diseases and rehabilitation. 2019;9(2):117-120.
  20. Xiuli C. Analysis of trigger factors of hyperhomocysteinemia and its pathophysiological significance. Smart Health. 2020;5(15):47-48.
  21. Berkins S, Schiöth HB, Rukh G. Depression and Vegetarians: Association between Dietary Vitamin B6, B12 and Folate Intake and Global and Subcortical Brain Volumes. Nutrients. 2021 May 24;13(6):1790. doi: 10.3390/nu13061790. PMID: 34073949; PMCID: PMC8225207.
  22. Zaric BL, Obradovic M, Bajic V, Haidara MA, Jovanovic M, Isenovic ER. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948-2961. doi: 10.2174/0929867325666180313105949. PMID: 29532755.
  23. Guidelines for the prevention and treatment of hypertension in China (revised in 2018). Chinese Journal of Cardiology. 2019;24(1):24-56.
  24. Silva ASE, Lacerda FV, da Mota MPG. Effect of Strength Training on Plasma Levels of Homocysteine in Patients with Type 2 Diabetes. Int J Prev Med. 2019 May 17;10:80. doi: 10.4103/ijpvm.IJPVM_313_17. PMID: 31198515; PMCID: PMC6547780.
  25. Guorong L, Yongping X, Weibin C. Correlation analysis between plasma homocysteine and carotid atherosclerosis. Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases. 2020;22(3):285-287.
  26. Chen L, Wang B, Wang J, Ban Q, Wu H, Song Y, Zhang J, Cao J, Zhou Z, Liu L, Cao T, Gao L, Guo H, Zhang T, Tang G, Huang X, Zhang Y, Li J, Huo Y, Cheng X, Zang T, Xu X, Zhang H, Qin X. Association between serum total homocysteine and arterial stiffness in adults: a community-based study. J Clin Hypertens (Greenwich). 2018 Apr;20(4):686-693. doi: 10.1111/jch.13246. Epub 2018 Feb 26. PMID: 29481715; PMCID: PMC8031326.
  27. Zhu M, Mao M, Lou X. Elevated homocysteine level and prognosis in patients with acute coronary syndrome: a meta-analysis. Biomarkers. 2019 Jun;24(4):309-316. doi: 10.1080/1354750X.2019.1589577. Epub 2019 May 6. PMID: 30821522.
  28. Ying Y, Jun Y. Research Progress on the relationship between homocysteine and cardiovascular disease. Journal of Clinical Cardiovascular Disease. 2017;33(2):106-109.
  29. Yue H, Lu L, Hongli Z. Research progress of vascular endothelial function and the occurrence and development of coronary atherosclerosis. Journal of Integrated Traditional Chinese and Western Medicine on Cardiovascular and Cerebrovascular Diseases. 2018;16(11):1525-1528.
  30. Haiquan HF, Shangqing B, Hairui Y. Effect of homocysteine on vascular dysfunction in rats. Chinese Medical Emergency. 2022;31(1):80-83.
  31. Ningjiang H, Hai H, Zhuo J, Shifang H, Haoliang H. Homocysteine thiolactone endoplasmic reticulum stress pathway promotes huvecs adhesion. Basic Medicine and Clinic. 2018;38(9):1274-1279.
  32. Zhang Z, Wei C, Zhou Y, Yan T, Wang Z, Li W, Zhao L. Homocysteine Induces Apoptosis of Human Umbilical Vein Endothelial Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. Oxid Med Cell Longev. 2017;2017:5736506. doi: 10.1155/2017/5736506. Epub 2017 May 28. PMID: 28630659; PMCID: PMC5467318.
  33. Yang F, Qi X, Gao Z, Yang X, Zheng X, Duan C, Zheng J. Homocysteine injures vascular endothelial cells by inhibiting mitochondrial activity. Exp Ther Med. 2016 Oct;12(4):2247-2252. doi: 10.3892/etm.2016.3564. Epub 2016 Aug 2. PMID: 27698720; PMCID: PMC5038564.
  34. Ma SC, Cao JC, Zhang HP, Jiao Y, Zhang H, He YY, Wang YH, Yang XL, Yang AN, Tian J, Zhang MH, Yang XM, Lu GJ, Jin SJ, Jia YX, Jiang YD. Aberrant promoter methylation of multiple genes in VSMC proliferation induced by Hcy. Mol Med Rep. 2017 Nov;16(5):7775-7783. doi: 10.3892/mmr.2017.7521. Epub 2017 Sep 19. PMID: 28944836.
  35. Chengjian J, Hangyuan J, Weiliang T, Jufang C, Xiaoya Z, Liping M, Yan G. Effect of homocysteine on the production of Enos, P-Enos and no by endothelial progenitor cells and the improvement of yellow rice wine. Chinese Journal of Arteriosclerosis. 2015;23(5):475-479.
  36. Qin X, Qin L, Luo J, Liu B, Zhao J, Li H, Wei Y. Correlation analysis between 25-hydroxyvitamin D3, vitamin B12 and vitamin C and endothelial function of patients with CHD. Exp Ther Med. 2019 Jan;17(1):418-422. doi: 10.3892/etm.2018.6944. Epub 2018 Nov 8. PMID: 30651815; PMCID: PMC6307406.
  37. Chen T, Li Y, Wang J, Wang J. Correlation among cystatin C, homocysteine and arteriosclerosis indexes in patients with chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021 Dec 28;46(12):1338-1345. English, Chinese. doi: 10.11817/j.issn.1672-7347.2021.210059. PMID: 35232902.
  38. Li X, Xiuying C. Research progress on vascular etiology of recurrent cerebral infarction. Chinese Rehabilitation Theory and Practice. 2015;21(11):1264-1266.
  39. Zhao JV, Schooling CM. Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis. Eur J Clin Nutr. 2017 Feb;71(2):267-273. doi: 10.1038/ejcn.2016.246. Epub 2016 Nov 30. PMID: 27901035.
  40. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev. 2018 Feb 14;118(3):1253-1337. doi: 10.1021/acs.chemrev.7b00205. Epub 2017 Nov 7. PMID: 29112440; PMCID: PMC6029264.
  41. Chi Z, Byeon HE, Seo E, Nguyen QT, Lee W, Jeong Y, Choi J, Pandey D, Berkowitz DE, Kim JH, Lee SY. Histone deacetylase 6 inhibitor tubastatin A attenuates angiotensin II-induced hypertension by preventing cystathionine γ-lyase protein degradation. Pharmacol Res. 2019 Aug;146:104281. doi: 10.1016/j.phrs.2019.104281. Epub 2019 May 21. PMID: 31125601.
  42. Jianchang Z. Correlation between blood pressure variability, morning peak of blood pressure and atherosclerosis in patients with aerebral infarction complicated with hypertension. Hebei Medicine. 2017;39(4):508-510+515.
  43. Yi T, Yangsong O, Jiaqi W, Sixin L, Xiaojun Y, Hong Z. Study on the relationship between Hcy, Hs-CRP and carotid atherosclerosis in patients with acute cerebral infarction. Advances in Modern Biomedicine. 2016;16(20):3853-3855+3859.
  44. Faverzani JL, Hammerschmidt TG, Sitta A, Deon M, Wajner M, Vargas CR. Oxidative Stress in Homocystinuria Due to Cystathionine ß-Synthase Deficiency: Findings in Patients and in Animal Models. Cell Mol Neurobiol. 2017 Nov;37(8):1477-1485. doi: 10.1007/s10571-017-0478-0. Epub 2017 Mar 3. PMID: 28258516.
  45. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid Med Cell Longev. 2019 Aug 5;2019:6175804. doi: 10.1155/2019/6175804. PMID: 31467634; PMCID: PMC6701375.
  46. Glippa O, Engström-Öst J, Kanerva M, Rein A, Vuori K. Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors. PLoS One. 2018 Apr 13;13(4):e0195981. doi: 10.1371/journal.pone.0195981. PMID: 29652897; PMCID: PMC5898752.
  47. Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci. 2019 Feb 17;20(4):867. doi: 10.3390/ijms20040867. PMID: 30781581; PMCID: PMC6412520.
  48. Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang CC, Feng J, Wang L. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019 Jan;20:46-59. doi: 10.1016/j.redox.2018.09.021. Epub 2018 Sep 26. PMID: 30292945; PMCID: PMC6174864.
  49. Guo G, Sun W, Liu G, Zheng H, Zhao J. Comparison of oxidative stress biomarkers in hypertensive patients with or without hyperhomocysteinemia. Clin Exp Hypertens. 2018;40(3):262-266. doi: 10.1080/10641963.2017.1368535. Epub 2017 Sep 18. PMID: 28920709.
  50. Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol. 2018 Apr;175(8):1173-1189. doi: 10.1111/bph.13988. Epub 2017 Sep 22. PMID: 28836260; PMCID: PMC5867019.
  51. Tian X, Zhao L, Song X, Yan Y, Liu N, Li T, Yan B, Liu B. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway. Biomed Res Int. 2016;2016:4847874. doi: 10.1155/2016/4847874. Epub 2016 Apr 17. PMID: 27190988; PMCID: PMC4852127.
  52. Juan L. Relationship between homocysteine level and carotid atherosclerosis and vascular endothelial function in patients with cerebral infarction. Journal of Medicine. 2021;38(3):217-219+222.
  53. Shunjun L, Hui W, Suying P, Xia D, Yunxia L. Changes and clinical significance of serum Ox LDL, Hcy and LDL levels in patients with acute cerebral infarction. Shaanxi Medical Journal. 2019;48(5):664-666+670.
  54. Jinpeng X, Yang L, Jing L, Weiying D, Zhanwen X, Xingzhou Z, Shujiang S, Fulin L. Correlation between serum Hcy content, inflammatory factors and plaque stability in patients with type H hypertension complicated with carotid atherosclerosis. Chinese Journal of Modern Medicine. 2017;27(28):61-65.
  55. Faming W. Significance of serum homocysteine and triacylglycerol in the prognosis of elderly patients with coronary heart disease. China Health Standard Management. 2018;9(1):114-116.
  56. Yang HY, Shengchao M, XianMei L, Fanqi K, Wei G, Nan W, Yuexia J, Xiaoming Y, Shaoju J, Yi J, Deng, Jun C. Effect of EC-SOD on oxidative stress of monocyte derived macrophages induced by homocysteine. Chinese Journal of Arteriosclerosis. 2017;25(1):19-24.
  57. Waly MI, Ali A, Al-Nassri A, Al-Mukhaini M, Valliatte J, Al-Farsi Y. Low nourishment of B-vitamins is associated with hyperhomocysteinemia and oxidative stress in newly diagnosed cardiac patients. Exp Biol Med (Maywood). 2016 Jan;241(1):46-51. doi: 10.1177/1535370215596860. Epub 2015 Aug 4. PMID: 26246496; PMCID: PMC4935428.
  58. Faverzani JL, Hammerschmidt TG, Sitta A, Deon M, Wajner M, Vargas CR. Oxidative Stress in Homocystinuria Due to Cystathionine ß-Synthase Deficiency: Findings in Patients and in Animal Models. Cell Mol Neurobiol. 2017 Nov;37(8):1477-1485. doi: 10.1007/s10571-017-0478-0. Epub 2017 Mar 3. PMID: 28258516.
  59. Richard E, Gallego-Villar L, Rivera-Barahona A, Oyarzábal A, Pérez B, Rodríguez-Pombo P, Desviat LR. Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. Oxid Med Cell Longev. 2018 Mar 20;2018:1246069. doi: 10.1155/2018/1246069. PMID: 29743968; PMCID: PMC5884027.
  60. Hao L, Menghao L , Yuanyuan W, Tiantian L, Jichen L, Wenyan L, Meng D, Zhigang G. The value of five inflammatory indexes in judging the risk of atherosclerosis and coronary heart disease. Journal of Practical Medicine. 2016;32(2):203-207.
  61. Hao engang, Yu Renliang, Chang Fangyuan, Liu yuesen, Wang Tao. Relationship between plasma homocysteine level and severity and prognosis of coronary artery disease in patients with non ST segment elevation acute coronary syndrome. Journal of Clinical Emergency. 2019;20(3):189-194.
  62. Morariu M, Hodas R, Benedek T, Benedek I, Opincariu D, Mester A, Chitu M, Kovacs I, Rezus C, Pasaroiu D, Mitra N, Szilágyi SM, Georgescu D, Rezus E. Impact of inflammation-mediated response on pan-coronary plaque vulnerability, myocardial viability and ventricular remodeling in the postinfarction period - the VIABILITY study: Protocol for a non-randomized prospective clinical study. Medicine (Baltimore). 2019 Apr;98(17):e15194. doi: 10.1097/MD.0000000000015194. PMID: 31027064; PMCID: PMC6831282.
  63. Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T, Lv Y. Implications of Sortilin in Lipid Metabolism and Lipid Disorder Diseases. DNA Cell Biol. 2017 Dec;36(12):1050-1061. doi: 10.1089/dna.2017.3853. Epub 2017 Sep 25. PMID: 28945101.
  64. Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience. 2013 Nov 12;252:302-19. doi: 10.1016/j.neuroscience.2013.07.051. Epub 2013 Jul 31. PMID: 23912038; PMCID: PMC3905452.
  65. Yang Y, Yunling Z, Zhichen Z, Fang G, Hui Z, Haochang S, Yan Z, Xue S, Hong Z, Baoxin C, Tao L, Jianwei W. Correlation between syndrome elements and homocysteine in stroke high-risk population with carotid atherosclerosis. Chinese Journal of Traditional Chinese Medicine. 2017;32(2):537-541.
  66. Dzobo KE, Hanford KML, Kroon J. Vascular Metabolism as Driver of Atherosclerosis: Linking Endothelial Metabolism to Inflammation. Immunometabolism. 2021 May 17;3(3):e210020. doi: 10.20900/immunometab20210020. PMID: 34084561; PMCID: PMC7610885.
  67. Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1731-8. doi: 10.1161/ATVBAHA.114.303887. Epub 2014 Jun 5. PMID: 24903093.
  68. Chernyavskiy I, Veeranki S, Sen U, Tyagi SC. Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci. 2016 Jan;1363(1):138-54. doi: 10.1111/nyas.13009. Epub 2016 Feb 5. PMID: 26849408; PMCID: PMC4801713.
  69. Qian Z, Peihua L, Wenfeng Y, Wenli F, Alatangole. Mechanism of oxidized low density lipoprotein promoting arteriosclerosis. International Journal of Laboratory Medicine. 2015;36(3):382-385.
  70. Wei G, Shengchao M, Hui Z, Shuqiang L, Tingting G, Yang Y, Xiaoling Y, Hua X, Xiaoming Y, Guanjun L, Yuexia J, Jun C, Yideng J. The role of fatty acid binding protein 4 in Hcy induced cholesterol accumulation in foam cells. Chinese Journal of Arteriosclerosis. 2016;24(8):757-762.
  71. Yan L, Hui D, Rongtang Q, Chunliang Y, Peiming L, Rong C. Correlation between serum uric acid and homocysteine levels and arteriosclerosis in patients with stage 3 chronic kidney disease. Journal of Clinical Cardiovascular Disease. 2020;36(11):1004-1007.
  72. Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, De Luca G; Novara Atherosclerosis Study Group (NAS). Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res. 2014 Aug;134(2):288-93. doi: 10.1016/j.thromres.2014.05.025. Epub 2014 May 27. PMID: 24928335.
  73. Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014 Dec;13(12):904-27. doi: 10.1038/nrd4390. Epub 2014 Nov 7. PMID: 25376097.
  74. Gurda D, Handschuh L, Kotkowiak W, Jakubowski H. Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids. 2015 Jul;47(7):1319-39. doi: 10.1007/s00726-015-1956-7. Epub 2015 Mar 24. PMID: 25802182; PMCID: PMC4458266.
  75. Yuanfang L. Relationship between cerebral infarction, carotid plaque and Hyperhomocysteine. Stroke and Neurological Diseases. 2016;23(2):134-135.
  76. Mengyang Y, Junhui T, Aiai Z, fangjiang L, Yanjing L. Research progress of homocysteine and the mechanism of atherosclerosis. Journal of Hebei North University (Natural Science Edition). 2018;34(10):56-60.
  77. Jiankai z, Ying T, Yingwen C, Hangying W, Yuying C, Yanxian W. Effects of homocysteine on reverse transport and antioxidant function of high density lipoprotein. Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases. 2016;18(3):233-236.
  78. Qinfeng Z, Weiwei Q, Hong L, Hongwei G, Gaojie F, Chuanshi X, Fen G. Correlation between Hcy and HDL paraoxonase antioxidant function in patients with coronary heart disease. Electronic Journal of Integrated Traditional Chinese and Western Medicine on Cardiovascular Disease. 2018;6(2):98-100.
  79. Xin J, Xin W, Xiaole Y, Dandan Z, Yukai G, Yongjun L. Study on the role of eNOS, CAV1 and PI3K/Akt signaling pathways in homocysteine promoting the migration and proliferation of rat vascular smooth muscle cells. Chinese General Practice. 2017;20(12):1469-1473.
  80. Xin J, Yukai G, Xiaole Y, Dandan Z, Rui Z, Yongjun L. Homocysteine induces the proliferation of human aortic smooth muscle cells through PI3K/Akt signaling pathway. Chinese Journal of Hygienic Inspection. 2017;27(1):1-4.
  81. Bo Y, Ping L, Liping M, Hangyuan G. Rosuvastatin inhibits homocysteine induced phenotypic transformation and signal pathway of rat aortic vascular smooth muscle cells. Journal of Xi'an Jiaotong University (Medical Edition). 2016;37(4):506-512.
  82. Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiologica. 2015;214(1):33-50.
  83. Chengfeng S, Weili L, Xiaohua L, Jing W, Shang W, Xinxing W. Mitochondrial mechanism of homocysteine promoting proliferation and apoptosis of smooth muscle cells. Journal of Nutrition. 2016;38(4):356-360.
  84. Ma SC, Cao JC, Zhang HP, Jiao Y, Zhang H, He YY, Wang YH, Yang XL, Yang AN, Tian J, Zhang MH, Yang XM, Lu GJ, Jin SJ, Jia YX, Jiang YD. Aberrant promoter methylation of multiple genes in VSMC proliferation induced by Hcy. Mol Med Rep. 2017 Nov;16(5):7775-7783. doi: 10.3892/mmr.2017.7521. Epub 2017 Sep 19. PMID: 28944836.
  85. Zhang HP, Wang YH, Cao CJ, Yang XM, Ma SC, Han XB, Yang XL, Yang AN, Tian J, Xu H, Zhang MH, Jiang YD. A regulatory circuit involving miR-143 and DNMT3a mediates vascular smooth muscle cell proliferation induced by homocysteine. Mol Med Rep. 2016 Jan;13(1):483-90. doi: 10.3892/mmr.2015.4558. Epub 2015 Nov 12. PMID: 26573388.
  86. Wensheng S, Yan Z, Yingbin Q, Dan L, He W, Li J. Correlation between plasma homocysteine level and carotid atherosclerosis. Chinese Journal of Gerontology. 2022;42(3):526-529.
  87. Anning, Shengjian G, Guixia Y, Shengying J, Guichao Y. Study on the role of mirna-143 in the proliferation of vascular smooth muscle cells induced by homocysteine. Chinese Pharmacology Bulletin. 2016;32(8):1097-1101.
  88. Han XB, Zhang HP, Cao CJ, Wang YH, Tian J, Yang XL, Yang AN, Wang J, Jiang YD, Xu H. Aberrant DNA methylation of the PDGF gene in homocysteine‑mediated VSMC proliferation and its underlying mechanism. Mol Med Rep. 2014 Aug;10(2):947-54. doi: 10.3892/mmr.2014.2249. Epub 2014 May 20. PMID: 24841643.
  89. Yuanchun C, Chuangliang Z, Qingquan W. Role of autophagy in vascular endothelial cell injury and inflammatory response induced by hyperuricemia. Chinese Journal of Gerontology. 2019;39(24):6098-6101.
  90. Zhen Z, Xingwang N, Min K, Ping L, Xiaomei W, Hui Z, Xiaobing X. Research progress of plasma homocysteine level in patients with coronary atherosclerotic heart disease. Chinese Journal of Laboratory Medicine. 2016;39(9):726-728.
  91. Karadeniz M, Sarak T, Duran M, Alp C, Kandemir H, Etem Celik İ, Simsek V, Kılıc A. Hyperhomocysteinemia Predicts the Severity of Coronary Artery Disease as Determined by the SYNTAX Score in Patients with Acute Coronary Syndrome. Acta Cardiol Sin. 2018 Nov;34(6):458-463. doi: 10.6515/ACS.201811_34(6).20180528B. PMID: 30449985; PMCID: PMC6236564.
  92. Yanping F, Jiaqi Yi, Min Wu. Changes of serum Hcy and EPO levels in patients with ischemic stroke and their relationship with carotid atherosclerosis. Journal of Modern Medicine. 2017;32-83.
  93. Chiang JK, Sung ML, Yu HR, Chang HI, Kuo HC, Tsai TC, Yen CK, Chen CN. Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression. J Cell Physiol. 2011 Apr;226(4):1017-26. doi: 10.1002/jcp.22415. PMID: 20857402.
  94. Fangmin Q. Relationship between blood homocysteine and peripheral arteriosclerosis. Knowledge of Cardiovascular Disease Prevention and Treatment. 2016;10:156-157.
  95. Yuanchun C, chuangliang Z, Qingquan Wu. Role of autophagy in vascular endothelial cell injury and inflammatory response induced by hyperuricemia. Chinese Journal of Gerontology. 2019;39(24):6098-6101.
  96. Wei D, Deqiang L, Rui C, Yan Z, Lihua H. Application value of serum homocysteine and B-type brain natriuretic peptide levels in evaluating left ventricular function after PCI in patients with coronary heart disease. Shanghai Pharmaceutical. 2017;38(7):42-44.
  97. Li J, Zhang Y, Zhang Y, Lü S, Miao Y, Yang J, Huang S, Ma X, Han L, Deng J, Fan F, Liu B, Huo Y, Xu Q, Chen C, Wang X, Feng J. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol. 2018 Jul;17:386-399. doi: 10.1016/j.redox.2018.04.021. Epub 2018 May 1. PMID: 29860106; PMCID: PMC6007174.
  98. Zhang Rui, chenhailan, Shiyang Q, hejianqiu, gexiaochun, wangyanxin, Gao Yu, hanguiyan, liuxiaoyan. Study on the correlation between plasma homocysteine level in patients with type 2 diabetes and carotid intima-media thickness in patients with carotid atherosclerosis. Journal of Clinical and Experimental Medicine. 2019;18(10):1058-1061.
  99. Xingxing L, Xuelian Z, Ruixian Z, Weixuan Li. Correlation between serum homocysteine level and coagulation function in patients with hypertension complicated with atherosclerosis. Journal of Modern Laboratory Medicine. 2021;36(3):144-147+150.
  100. Liting S, Xiaoli W. Relationship between plasma atherogenic index, homocysteine level and coronary heart disease. Journal of Integrated Traditional Chinese and Western Medicine on Cardiovascular and Cerebrovascular Diseases. 2021;19(5):818-820.
  101. Yang Z, Wang L, Zhang W, Wang X, Zhou S. Plasma homocysteine involved in methylation and expression of thrombomodulin in cerebral infarction. Biochem Biophys Res Commun. 2016 May 13;473(4):1218-1222. doi: 10.1016/j.bbrc.2016.04.042. Epub 2016 Apr 12. PMID: 27079234.
  102. Xuan Li, Mei Y, dunfang L, Yibin H. Correlation analysis between serum uric acid, homocysteine and severity of coronary heart disease. Journal of Clinical Rational Drug Use. 2017;10(36):13-14.
  103. Huan Lu, Yiying Z, Min R, Ruan, Xiang Y, Dehua H. Association analysis and related function study of serum homocysteine and blood lipid level in the risk of coronary heart disease. Jilin Medical Science. 2017;38(7):1266-1268.
  104. Jian Li. Relationship between plasma Hcy level and carotid atherosclerosis in type 2 diabetes. Journal of Clinical Rational Drug Use. 2017;10(35):123-124.
  105. Xin Ji, Xiaole Y, Dandan Z, Xiaobin Z, Rui Z, Yongjun Li. Correlation between adropin protein and homocysteine level in patients with coronary heart disease. International Journal of Laboratory Medicine. 2018;39(2):133-136.
  106. Sheng Lu, Zaixin Yu, Youliang H, Bifeng T. Effects of different doses of tirofiban combined with tigrelol on short-term cardiovascular events and platelet aggregation rate in patients with NSTEMI. Journal of Heart. 2017;29(4):427-430.
  107. Nan Q, Chunhe Z. Relationship between CCL2/CCR2 and platelet aggregation rate in patients with acute myocardial infarction. Journal of Cardiovascular Rehabilitation Medicine. 2018;27(6):646-649.
  108. Youxia Z, Jing M, Shuzhen H. Relationship between Hcy level and central arterial pressure, cfPWV, AIX and RHI in young and middle-aged patients with refractory hypertension. Journal of Clinical and Experimental Medicine. 2020;19(17):1807-1811.
  109. Fushan W, Hongmei S, Tingli C. Correlation between serum hs CRP, Hcy and carotid atherosclerosis in hemodialysis patients. Hainan Medical Journal. 2017;28(1):132-133.
  110. Xiong L, Zilian F, Dongjing D, Ling Li, Xia Li. Detection and significance of coagulation and fibrinolysis indexes and homocysteine in patients with acute cerebral infarction. Chinese Journal of Practical Neurological Diseases. 2016;19(10):9-11.
  111. Ma Y, Peng D, Liu C, Huang C, Luo J. Serum high concentrations of homocysteine and low levels of folic acid and vitamin B12 are significantly correlated with the categories of coronary artery diseases. BMC Cardiovasc Disord. 2017 Jan 21;17(1):37. doi: 10.1186/s12872-017-0475-8. PMID: 28109191; PMCID: PMC5251223.
  112. Davì G, Di Minno G, Coppola A, Andria G, Cerbone AM, Madonna P, Tufano A, Falco A, Marchesani P, Ciabattoni G, Patrono C. Oxidative stress and platelet activation in homozygous homocystinuria. Circulation. 2001 Sep 4;104(10):1124-8. doi: 10.1161/hc3501.095287. PMID: 11535567.
  113. Fushan Wu, Hongmei Su, Tingli Chen. Correlation between serum hs CRP, Hcy and carotid atherosclerosis in hemodialysis patients. Hainan Medical Journal. 2017;28(1):132-133.
  114. Borowczyk K, Piechocka J, Głowacki R, Dhar I, Midtun Ø, Tell GS, Ueland PM, Nygård O, Jakubowski H. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial. J Intern Med. 2019 Feb;285(2):232-244.
  115. Wu Xiangjun, Zheng Haiyan, Zhu Yalan. Relationship between the levels of serum homocysteine, uric acid, high-sensitivity C-reactive protein and the degree of carotid atherosclerosis in patients with lacunar cerebral infarction[J]. Clinical Journal of Practical Hospital. 2020;17(2):220-223.
  116. Fengying N, Xiaoning J, Songtao C. Correlation between monocyte to high density lipoprotein cholesterol ratio, homocysteine and the severity of carotid atherosclerosis. Henan Medical Research. 2021;30(19):3529-3531.
  117. Peng L, Xueliang G, Jianhua Y, Zhongfeng Z, Dandan K, Min Z, Xuezhi D, pride W, Yunfu Li, Yanping D. Relationship between serum homocysteine level and severity of coronary artery stenosis in patients with type H hypertension. Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases. 2017;19(3):245-247.
  118. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995 May;10(1):111-3. doi: 10.1038/ng0595-111. PMID: 7647779.
  119. Hou X, Chen X, Shi J. Genetic polymorphism of MTHFR C677T and premature coronary artery disease susceptibility: A meta-analysis. Gene. 2015 Jul 1;565(1):39-44. doi: 10.1016/j.gene.2015.03.062. Epub 2015 Mar 31. PMID: 25839940.
  120. Geçene M, Tuncay F, Borman P, Yücel D, Senes M, Yılmaz BK. Atherosclerosis in male patients with ankylosing spondylitis: the relation with methylenetetrahydrofolate reductase (C677T) gene polymorphism and plasma homocysteine levels. Rheumatol Int. 2013 Jun;33(6):1519-24. doi: 10.1007/s00296-012-2552-8. Epub 2012 Dec 18. PMID: 23247802.
  121. Fang A, Jihong Z, Jing W, Hongliang C. Association between methylenetetrahydrofolate reductase gene polymorphism and elderly hypertension with hyperhomocysteinemia and carotid atherosclerosis. Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases. 2018;20(10):1092-1094.
  122. Dan C, Hong Y. Correlation between MTHFR C677T gene polymorphism, plasma homocysteine level and arteriosclerosis. Hainan Medical Journal. 2020;31(12):1510-1513.
  123. Li MN, Wang HJ, Zhang NR, Xuan L, Shi XJ, Zhou T, Chen B, Zhang J, Li H. MTHFR C677T gene polymorphism and the severity of coronary lesions in acute coronary syndrome. Medicine (Baltimore). 2017 Dec;96(49):e9044. doi: 10.1097/MD.0000000000009044. PMID: 29245302; PMCID: PMC5728917.
  124. Ni J, Zhang L, Zhou T, Xu WJ, Xue JL, Cao N, Wang X. Association between the MTHFR C677T polymorphism, blood folate and vitamin B12 deficiency, and elevated serum total homocysteine in healthy individuals in Yunnan Province, China. J Chin Med Assoc. 2017 Mar;80(3):147-153. doi: 10.1016/j.jcma.2016.07.005. Epub 2017 Jan 13. PMID: 28094233.
  125. Li L, Shengli G, Xiaojuan Z, Renwei G, Shufeng L. Correlation between Hcy, SAH and genomic methylation of peripheral blood lymphocytes in patients with coronary heart disease. Clinical Medical Practice. 2017;26(12):899-903.
  126. Hui Z, Wei G, Tingting G, Yanqiong M, Shuning H, Shengchao M, Xiaoling Y, Yuanxu J, Jue Tian T, Yideng J. Role of serum Sam/SAH in genomic DNA methylation of atherosclerosis induced by Hcy. Chinese Journal of Arteriosclerosis. 2017;25(2):129-133.
  127. Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis. 2014 Aug 21;13:134.
  128. Yang XL, Tian J, Liang Y, Ma CJ, Yang AN, Wang J, Ma SC, Cheng Y, Hua X, Jiang YD. Homocysteine induces blood vessel global hypomethylation mediated by LOX-1. Genet Mol Res. 2014 May 16;13(2):3787-99. doi: 10.4238/2014.May.16.2. PMID: 24938465.
  129. Fan Y, ZhaoQiong Z, Ping L, Xingwang N, Xiaobing X. Research progress of homocysteine in the pathogenesis of coronary heart disease. International Journal of Laboratory Medicine. 2019;40(11):1365-1368.
  130. Ma SC, Cao JC, Zhang HP, Jiao Y, Zhang H, He YY, Wang YH, Yang XL, Yang AN, Tian J, Zhang MH, Yang XM, Lu GJ, Jin SJ, Jia YX, Jiang YD. Aberrant promoter methylation of multiple genes in VSMC proliferation induced by Hcy. Mol Med Rep. 2017 Nov;16(5):7775-7783. doi: 10.3892/mmr.2017.7521. Epub 2017 Sep 19. PMID: 28944836.
  131. Wang R, Wang Y, Mu N, Lou X, Li W, Chen Y, Fan D, Tan H. Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice. Lab Invest. 2017 Aug;97(8):922-934. doi: 10.1038/labinvest.2017.30. Epub 2017 Apr 10. PMID: 28394319; PMCID: PMC5537437.
  132. Couchie D, Vaisman B, Abderrazak A, Mahmood DFD, Hamza MM, Canesi F, Diderot V, El Hadri K, Nègre-Salvayre A, Le Page A, Fulop T, Remaley AT, Rouis M. Human Plasma Thioredoxin-80 Increases With Age and in ApoE-/- Mice Induces Inflammation, Angiogenesis, and Atherosclerosis. Circulation. 2017 Aug 1;136(5):464-475. doi: 10.1161/CIRCULATIONAHA.117.027612. Epub 2017 May 4. PMID: 28473446; PMCID: PMC8369893.
  133. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, Zou Y, Ge J. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med. 2016 Dec;20(12):2318-2327. doi: 10.1111/jcmm.12923. Epub 2016 Aug 12. PMID: 27515767; PMCID: PMC5134386.
  134. Li R, Zhou Y, Liu W, Li Y, Qin Y, Yu L, Chen Y, Xu Y. Rare earth element lanthanum protects against atherosclerosis induced by high-fat diet via down-regulating MAPK and NF-κB pathways. Ecotoxicol Environ Saf. 2021 Jan 1;207:111195. doi: 10.1016/j.ecoenv.2020.111195. Epub 2020 Sep 3. PMID: 32891972.
  135. Huang H, Yu H, Lin L, Chen J, Zhu P. Protective effect of sonic hedgehog against oxidized low‑density lipoprotein‑induced endothelial apoptosis: Involvement of NF‑κB and Bcl‑2 signaling. Int J Mol Med. 2020 Jun;45(6):1864-1874. doi: 10.3892/ijmm.2020.4542. Epub 2020 Mar 16. Erratum in: Int J Mol Med. 2020 Oct;46(4):1593. PMID: 32186749; PMCID: PMC7169656.
  136. Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation. FASEB J. 2018 Aug;32(8):4070-4084. doi: 10.1096/fj.201701536R. Epub 2018 Mar 22. PMID: 29565737.
  137. HONGNA C, Wenzhao T, Zhihui Y, Yingai W, Jun L, Fuwen W. Protective effect of diplacone on vascular endothelial cell injury induced by homocysteine. Chinese Journal of Arteriosclerosis. 2017;25(7):666-670.
  138. Yiru W, Yifan Z, Jing W, Ping L. Research progress of atherosclerotic inflammation related signaling pathways. Journal of Cardio Cerebrovascular Diseases with Integrated Traditional Chinese and Western Medicine. 2021;19(23):4077-4080.
  139. Pei D, Fen G, Hongwei G, Yuan W, Gaojie F, Qinfeng Z, Rui B, Weiwei Q, Xiaosu S, Hong L. Homocysteine activates NF by inducing mir-33- κ B pathway up regulates RAW264 7 derived foam cell TNF- α、Expression of IL-6. Chinese Journal of Arteriosclerosis. 2018;26(12):1239-1244.
  140. Karasawa T, Takahashi M. Saturated fatty acid-crystals activate NLRP3 inflammasome. Aging (Albany NY). 2019 Mar 26;11(6):1613-1614. doi: 10.18632/aging.101892. PMID: 30923255; PMCID: PMC6461185.
  141. Jia F, Wu C, Chen Z, Lu G, Sun J. Atorvastatin attenuates atherosclerotic plaque destabilization by inhibiting endoplasmic reticulum stress in hyperhomocysteinemic mice. Mol Med Rep. 2016 Apr;13(4):3574-80. doi: 10.3892/mmr.2016.4975. Epub 2016 Mar 3. PMID: 26956896.
  142. Xu H, Zheng H, Huang J, Shen Y, Luo M. T-cell subsets are associated with serum homocysteine concentration in patients with essential hypertension. Clin Exp Hypertens. 2017;39(4):377-381. doi: 10.1080/10641963.2016.1267189. Epub 2017 May 17. PMID: 28513237.
  143. Jie L, Dongfeng W. Research status of the relationship between homocysteine, immune imbalance and atherosclerosis. Internal Medicine. 2018;13(3):359-362.
  144. LeiC, Shanshan Z, Shanshan W, Tingjiao L, Liming Z. Recent progress of homocysteine and its atherogenic mechanism. Progress in Modern Biomedicine. 2017;17(32):6398-6400.
  145. Weiping W, Ping H, Changqing X, Yuqiang Z, Changlin M. Correlation between thyroid function, carotid atherosclerosis and left ventricular structure in hemodialysis patients. Chinese Journal of Practical Internal Medicine. 2016;36(7):578-582.
  146. Jing X, Xiting Q. Effect of ALA-PDT treatment on the levels of MMP-9, MMP-13 and TIMP-1 in scar cancer cells in vitro. Modern Oncology. 2015;23(3):302-305.
  147. Dan Z, Peng Z, Zhaoying Z, Yanhong A. Correlation between serum matrix metalloproteinases and carotid atherosclerosis and calcium and phosphorus metabolism in maintenance hemodialysis patients. Journal of PLA Medicine. 2018;30(2):37-40.
  148. Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA, Keon YS. Zerumbone Suppresses Angiogenesis in HepG2 Cells through Inhibition of Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor, and Vascular Endothelial Growth Factor Receptor Expressions. Pharmacogn Mag. 2018 Jan;13(Suppl 4):S731-S736. doi: 10.4103/pm.pm_18_17. Epub 2018 Jan 31. PMID: 29491625; PMCID: PMC5822492.
  149. Wang S, Cheng M, Hu Z, Hu S, Zou Q, Lai X, Liu B, Jiang H, Huang C, Wu G. Angiotensin II Facilitates Matrix Metalloproteinase-9-Mediated Myosin Light Chain Kinase Degradation in Pressure Overload-Induced Cardiac Hypertrophy. Cell Physiol Biochem. 2017;44(6):2281-2295. doi: 10.1159/000486066. Epub 2017 Dec 14. PMID: 29262413.
  150. Juan Z, Wei-Guo Z, Heng-Liang S, Da-Guo W. Association of Matrix Metalloproteinase 9 C-1562T Polymorphism with Genetic Susceptibility to Myocardial Infarction: A Meta-Analysis. Curr Ther Res Clin Exp. 2015 Feb 23;77:40-5. doi: 10.1016/j.curtheres.2014.05.001. PMID: 26082814; PMCID: PMC4461879.
  151. Weili M, Yuelan Z, Fengmei B, Ying C. Correlation between plasma matrix metalloproteinase-9 and type H hypertension and the degree of coronary artery disease. Chinese Journal of Evidence Based Cardiovascular Medicine. 2018;10(12):1576-1578+1583.
  152. Chen L, Yang Q, Ding R, Liu D, Chen Z. Carotid thickness and atherosclerotic plaque stability, serum inflammation, serum MMP-2 and MMP-9 were associated with acute cerebral infarction. Exp Ther Med. 2018 Dec;16(6):5253-5257. doi: 10.3892/etm.2018.6868. Epub 2018 Oct 16. PMID: 30542482; PMCID: PMC6257476.
  153. Ping H, Jianping N. Research Progress on the relationship between homocysteine, high-sensitivity C-reactive protein, matrix metalloproteinase-9, lysophosphatidic acid, toll like receptor 4 and atherosclerosis. Chinese Journal of Clinicians. 2016;44(1):16-18.
  154. Yongdong Z. Study on the relationship between serum cystatin C, matrix metalloproteinase-9 and homocysteine and cerebral infarction. International Journal of Neurology and Neurosurgery. 2016;43(3):233-236.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search