Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Carob Antioxidants in Human Health: From Traditional Uses to Modern Pharmacology

Medicine Group    Start Submission

Abdullatif Azab*

Volume3-Issue8
Dates: Received: 2022-08-22 | Accepted: 2022-08-25 | Published: 2022-08-26
Pages: 953-973

Abstract

Carob has been used by humans since antiquity. Its major use is food, but traditional medicines of many nations used it for treatments of various health disorders. The fruits (pods or kibbles) were the main source for nutrition and medicinal uses, but decoctions and extracts were prepared from other parts of the tree, especially leaves. Modern science has analyzed most of the chemical compositions of the different parts, and among the phytochemicals that were found, antioxidants play very important roles in Carob nutritional and medicinal activities. So, in addition to having strong antioxidant activity and due to it, these natural products, their extracts, and foods that contain them, have anticancer, neuroprotective, hepatoprotective, antiaging, skin care, antidiabetic, and others. Phenolics and carbohydrates are the strongest antioxidants, but some volatile compounds have the same activity, to some extent. However, this review will present Carob antioxidants, their major nutritional and medicinal activities, and suggest future horizons for their use in human wellbeing.

FullText HTML FullText PDF DOI: 10.37871/jbres1538


Certificate of Publication




Copyright

© 2022 Azab A. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Azab A. Carob Antioxidants in Human Health: From Traditional Uses to Modern Pharmacology. J Biomed Res Environ Sci. 2022 Aug 26; 3(8): 953-973. doi: 10.37871/jbres1538, Article ID: JBRES1538, Available at: https://www.jelsciences.com/articles/jbres1538.pdf


Subject area(s)

References


  1. Jiang KW, Pan B, Tian B. Recent taxonomic changes for Fabaceae (Leguminosae) genera in China. Biodiv Sci. 2019;27:689-697. doi: 10.17520/biods.2019032.
  2. Hillcoat D, Lewis GP, Verdcourt B. A new species of Ceratonia (Leguminosae-Caesalpinioideae) from Arabia and the Somali Republic. Kew Bull. 1980;35:261-271. doi: 10.2307/4114570.
  3. Zohary D. Domestication of the carob (Ceratonia siliqua L.), Israel. J Plant Sci. 2002;50:141-145. doi: 10.1560/BW6B-4M9P-U2UA-C6NN.
  4. Gharnit N, Ennabili A. Categories of carob tree (Ceratonia siliqua L.) from Morocco. Int J Fruit Sci. 2016;16:259-274. doi: 10.1080/15538362.2015.1102674.
  5. Gubbuk H, Gunes E, Ayala-Silva T, Ercisli, S. Rapid vegetative propagation method for carob. Not Bot Hort Agrobot Cluj. 2011;39:251-254. doi: 10.15835/nbha3916074.
  6. Liphschitz N. Ceratonia siliqua in Israel: An ancient element or a newcomer? Isr J Bot. 1987;36:191-197. doi: 10.1080/0021213X.1987.10677083.
  7. Bottemal S, Sarpaki A. Environmental change in Crete: A 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. Holocene. 2003;13:733-749. doi: 10.1 191/0959683603hl659rp.
  8. Azab A. Carob (Ceratonia siliqua): Health, medicine and chemistry. Eur Chem Bull. 2017;6:456-469. doi: 10.17628/ecb.2017.6.456-469.
  9. Khalifa AB. Herbs: Nature's Pharmacy. 1st ed. Arab Cultural Center: Casablanca, Morocco: 2004. p.286-288.
  10. Guarino C, De Simone L, Santoro S. Ethnobotanical study of the Sannio area, Campania, Southern Italy. Ethnobot Res App. 2008;6:255-317. doi: 10.17348/era.6.0.255-317.
  11. Bou-Idra M, Rhafouri R, Zekkori B, Bahri H, El Omari M, Bentayeb A. Floristic and ethnobotanical studies of three plants, Cactus, Carob and Caper used in the Zerhoun region (Morocco). Int J Recent Adv Multidiscip Res. 2015;2:1027-1034.
  12. Bachar M, ElYacoubi H, Zidane L, Rochdi A. Ethnomedicinal and traditional phytotherapeutic plants used in Bouhachem Natural Regional Park (Rif of Morocco): Case of Bni-Leit and Al-Oued districts. J Pharm Pharmacogn Res. 2021; 9:284-312.
  13. Ahmed HM. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J Ethnobiol Ethnomed. 2016 Jan 28;12:8. doi: 10.1186/s13002-016-0081-3. PMID: 26821541; PMCID: PMC4730727.
  14. Ali-Shtayeh MS, Jamous RM, Jamous RM. Traditional Arabic Palestinian ethnoveterinary practices in animal health care: A field survey in the West Bank (Palestine). J Ethnopharmacol. 2016 Apr 22;182:35-49. doi: 10.1016/j.jep.2016.02.005. Epub 2016 Feb 8. PMID: 26869545.
  15. Palabaş Uzun S, Koca C. Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş. Plant Divers. 2020 Dec 29;42(6):443-454. doi: 10.1016/j.pld.2020.12.003. PMID: 33733012; PMCID: PMC7936109.
  16. Gürdal B, Kültür S. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J Ethnopharmacol. 2013 Mar 7;146(1):113-26. doi: 10.1016/j.jep.2012.12.012. Epub 2012 Dec 20. PMID: 23261486.
  17. Erbay MS, Anil S, Melikoğlu G. Plants used in traditional treatment against anemia in Turkey. Marmara Pharm J. 2016;20:164-171. doi: 10.12991/mpj.20162044391.
  18. Akbulut S, Bayramoglu MM. the trade and use of some medical and aromatic herbs in Turkey. Stud Ethno-Med 2013;7:67-77. doi: 10.1080/09735070.2013.11886446.
  19. Yousif AK, Alghzawi HM. Processing and characterization of carob powder. Food Chem. 2000;69:283-287. doi: 10.1016/S0308-8146(99)00265-4.
  20. Emara MH, Soliman HH, Elnadry M, Mohamed Said E, Abd-Elsalam S, Elbatae HE, Zaher TI, Ezzeldin S Bazeed S, Abdel-Razik A, Youssef Mohamed S, Elfert A; “Egyptian Ramadan Fasting, Liver Diseases Interest Group”. Ramadan fasting and liver diseases: A review with practice advices and recommendations. Liver Int. 2021 Mar;41(3):436-448. doi: 10.1111/liv.14775. Epub 2021 Jan 9. PMID: 33369880.
  21. Zhengzhang T. On the origin of the carat as the unit of weight for gemstones. Chin J Geochem. 1991;10:288-293. doi: 10.1007/BF02843332.
  22. Turnbull LA, Santamaria L, Martorell T, Rallo J, Hector A. Seed size variability: from carob to carats. Biol Lett. 2006 Sep 22;2(3):397-400. doi: 10.1098/rsbl.2006.0476. PMID: 17148413; PMCID: PMC1686184.
  23. Ben Ayache S, Behija Saafi E, Emhemmed F, Flamini G, Achour L, Muller CD. Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation. Molecules. 2020 Jul 8;25(14):3120. doi: 10.3390/molecules25143120. PMID: 32650498; PMCID: PMC7397290.
  24. Pekmezci E, Dundar C, Turkoglu M. Proprietary Herbal Extract Downregulates the Gene Expression of IL-1α in HaCaT Cells: Possible Implications Against Nonscarring Alopecia. Med Arch. 2018 Apr;72(2):136-140. doi: 10.5455/medarh.2018.72.136-140. PMID: 30302033; PMCID: PMC6126931.
  25. Abidar S, Yildiz O, Degirmenci A, Amakran A, El Maadoudi M, Nhiri M. Glucose-mediated protein glycation: Contribution of methanolic extract of Ceratonia siliqua L. in protection and in vitro potential inhibition of acetylcholinesterase. J Food Biochem. 2019 Nov;43(11):e13009. doi: 10.1111/jfbc.13009. Epub 2019 Aug 8. PMID: 31393019.
  26. Al-Timimi LAN, Al-Tameemi NAN. Role of carob seed in characterization of MDR bacteria in diabetic foot ulcer. Biochem Cell Arch. 2020;20:927-934. doi: 10.35124/bca.2020.20.1.927.
  27. Abdulkareem RS, Al-Hayali WRY, Ibrahim II. Antimicrobial activity of Ceratonia silique L. extract against diarrheagenic E-coli. Sys Rev Pharm. 2020;11:2139-2141.
  28. Ben Othmen K, Elfalleh W, García Beltrán JM, Esteban MÁ, Haddad M. An in vitro study of the effect of carob (Ceratonia siliqua L.) leaf extracts on gilthead seabream (Sparus aurata L.) leucocyte activities. Antioxidant, cytotoxic and bactericidal properties. Fish Shellfish Immunol. 2020 Apr;99:35-43. doi: 10.1016/j.fsi.2020.02.005. Epub 2020 Feb 4. PMID: 32032761.
  29. Adjal F, Guitone A, Almi S. Antibacterial properties of Ceratonia siliqua ethanolic extract and Artemisia herba alba essential oil. Acad Lett. 2021;1943. doi: 10.20935/AL1943.
  30. Darwish WS, Khadr AES, Kamel MAEN, Abd Eldaim MA, El Sayed IET, Abdel-Bary HM, Ullah S, Ghareeb DA. Phytochemical Characterization and Evaluation of Biological Activities of Egyptian Carob Pods (Ceratonia siliqua L.) Aqueous Extract: In Vitro Study. Plants (Basel). 2021 Nov 29;10(12):2626. doi: 10.3390/plants10122626. PMID: 34961100; PMCID: PMC8706755.
  31. Klenow S, Glei M, Haber B, Owen R, Pool-Zobel BL. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem Toxicol. 2008 Apr;46(4):1389-97. doi: 10.1016/j.fct.2007.09.003. Epub 2007 Sep 11. PMID: 17950517.
  32. Custódio L, Fernandes E, Escapa AL, López-Avilés S, Fajardo A, Aligué R, Alberício F, Romano A. Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm Biol. 2009;47:721-728. doi: 10.1080/13880200902936891.
  33. Ghanemi FZ, Belarbi M, Fluckiger A, Nani A, Dumont A, De Rosny C, Aboura I, Sayed Khan A, Murtaza B, Benammar C, Boucif Farid L, Patoli D, Delmas D, Rébé C, Apétoh L, Akhtar Khan N, Ghringhelli F, Rialland M, Hichami A. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J Funct Foods. 2017;33: 112-121. doi: 10.1016/j.jff.2017.03.032.
  34. Gregoriou G, Neophytou CM, Vasincu A, Gregoriou Y, Hadjipakkou H, Pinakoulaki E, Christodoulou MC, Ioannou GD, Stavrou IJ, Christou A, Kapnissi-Christodoulou CP, Aigner S, Stuppner H, Kakas A, Constantinou AI. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob (Ceratonia siliqua L.) Pods Using Different Solvents. Molecules. 2021 Aug 19;26(16):5017. doi: 10.3390/molecules26165017. PMID: 34443605; PMCID: PMC8401790.
  35. Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Determination of protective effect of carob (Ceratonia siliqua L.) extract against cobalt(II) nitrate-induced toxicity. Environ Sci Pollut Res Int. 2020 Nov;27(32):40253-40261. doi: 10.1007/s11356-020-10009-6. Epub 2020 Jul 13. PMID: 32661972.
  36. Agrawal A, Mohan M, Kasture S, Foddis C, Frau MA, Loi MC, Maxia A. Antidepressant activity of Ceratonia siliqua L. fruit extract, a source of polyphenols. Nat Prod Res. 2011 Feb;25(4):450-6. doi: 10.1080/14786419.2010.527447. PMID: 21328139.
  37. Lakkab I, El Hajaji H, Lachkar N, Lefter R, Ciobica A, El Bali B, Lachkar M. Ceratonia siliqua L. seed peels: Phytochemical profile, antioxidant activity, and effect on mood disorders. J Funct Foods. 2019;54:457-465. doi: 10.1016/j.jff.2019.01.041.
  38. Gruendel S, Otto B, Garcia AL, Wagner K, Mueller C, Weickert MO, Heldwein W, Koebnick C. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans. Br J Nutr. 2007 Jul;98(1):101-5. doi: 10.1017/S0007114507701642. Epub 2007 Mar 21. PMID: 17381962.
  39. Rtibi K, Selmi S, Grami D, Saidani K, Sebai H, Amri M, Eto B, Marzouki L. Ceratonia siliqua L. (immature carob bean) inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. J Sci Food Agric. 2017 Jun;97(8):2664-2670. doi: 10.1002/jsfa.8091. Epub 2016 Nov 11. PMID: 27739095.
  40. Qasem MA, Noordin MI, Arya A, Alsalahi A, Jayash SN. Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. PeerJ. 2018 May 23;6:e4788. doi: 10.7717/peerj.4788. PMID: 29844959; PMCID: PMC5970558.
  41. Lambert C, Cubedo J, Padró T, Vilahur G, López-Bernal S, Rocha M, Hernández-Mijares A, Badimon L. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism. Nutrients. 2018 Feb 27;10(3):271. doi: 10.3390/nu10030271. PMID: 29495516; PMCID: PMC5872689.
  42. García-Díez E, López-Oliva ME, Caro-Vadillo A, Pérez-Vizcaíno F, Pérez-Jiménez J, Ramos S, Martín MÁ. Supplementation with a Cocoa-Carob Blend, Alone or in Combination with Metformin, Attenuates Diabetic Cardiomyopathy, Cardiac Oxidative Stress and Inflammation in Zucker Diabetic Rats. Antioxidants (Basel). 2022 Feb 21;11(2):432. doi: 10.3390/antiox11020432. PMID: 35204314; PMCID: PMC8869324.
  43. Loeb H, Vandenplas Y, Würsch P, Guesry P. Tannin-rich carob pod for the treatment of acute-onset diarrhea. J Pediatr Gastroenterol Nutr. 1989 May;8(4):480-5. doi: 10.1097/00005176-198905000-00010. PMID: 2723939.
  44. Akşit S, Cağlayan S, Cukan R, Yaprak I. Carob bean juice: a powerful adjunct to oral rehydration solution treatment in diarrhoea. Paediatr Perinat Epidemiol. 1998 Apr;12(2):176-81. doi: 10.1046/j.1365-3016.1998.00093.x. PMID: 9620567.
  45. Rtibi K, Jabri MA, Selmi S, Sebai H, Marie JC, Amri M, Marzouki L, El-Benna J. Preventive effect of carob (Ceratonia siliqua L.) in dextran sulfate sodium-induced ulcerative colitis in rat. RSC Adv. 2016;6:19992-20000. doi: 10.1039/c5ra21388f.
  46. Lachkar N, l-Sobarry M, El Hajaji H, Lamkinsi T, Lachkar M, Cherrah Y, Alaoui K. Anti-inflammatory and antioxidant effect of Ceratonia siliqua L. methanol barks extract. J Chem Pharm Res. 2016;8:202-210.
  47. Aboura I, Nani A, Belarbi M, Murtaza B, Fluckiger A, Dumont A, Benammar C, Tounsi MS, Ghiringhelli F, Rialland M, Khan NA, Hichami A. Protective effects of polyphenol-rich infusions from carob (Ceratonia siliqua) leaves and cladodes of Opuntia ficus-indica against inflammation associated with diet-induced obesity and DSS-induced colitis in Swiss mice. Biomed Pharmacother. 2017 Dec;96:1022-1035. doi: 10.1016/j.biopha.2017.11.125. Epub 2017 Dec 6. PMID: 29221725.
  48. Rico D, Martín-Diana AB, Martínez-Villaluenga C, Aguirre L, Silván JM, Dueñas M, De Luis DA, Lasa A. In vitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon. 2019 Jan 30;5(1):e01175. doi: 10.1016/j.heliyon.2019.e01175. PMID: 30775572; PMCID: PMC6357213.
  49. Martínez-Villaluenga C, Peñas E, Rico D, Martin-Diana AB, Portillo MP, Macarulla MT, de Luis DA, Miranda J. Potential Usefulness of a Wakame/Carob Functional Snack for the Treatment of Several Aspects of Metabolic Syndrome: From In Vitro to In Vivo Studies. Mar Drugs. 2018 Dec 17;16(12):512. doi: 10.3390/md16120512. PMID: 30562926; PMCID: PMC6315385.
  50. Gruendel S, Garcia AL, Otto B, Mueller C, Steiniger J, Weickert MO, Speth M, Katz N, Koebnick C. Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J Nutr. 2006 Jun;136(6):1533-8. doi: 10.1093/jn/136.6.1533. PMID: 16702317.
  51. Papakonstantinou E, Orfanakos N, Farajian P, Kapetanakou AE, Makariti IP, Grivokostopoulos N, Ha MA, Skandamis PN. Short-term effects of a low glycemic index carob-containing snack on energy intake, satiety, and glycemic response in normal-weight, healthy adults: Results from two randomized trials. Nutrition. 2017 Oct;42:12-19. doi: 10.1016/j.nut.2017.05.011. Epub 2017 May 31. PMID: 28870473.
  52. Jamous RM, Abu-Zaitoun SY, Akkawi RJ, Ali-Shtayeh MS. Antiobesity and Antioxidant Potentials of Selected Palestinian Medicinal Plants. Evid Based Complement Alternat Med. 2018 Jun 13;2018:8426752. doi: 10.1155/2018/8426752. PMID: 30026782; PMCID: PMC6031216.
  53. Sour S, Fridi C, Taif A. Beneficial Effects of carob pulp (Ceratonia siliqua) on lipids profile and oxidant/antioxidant status in obese rats. Agrobiologia. 2019;9:1200-1206.
  54. Jaffari H, Abedi B, Fatolahi H. The effect of 8 weeks of carob supplementation and resistance training on lipid profile and irisin in obese men. Int J Sport Exerc Health Res. 2020;4:91-95. doi: 10.31254/sportmed.4212.
  55. Fujita K, Norikura T, Matsui-Yuasa I, Kumazawa S, Honda S, Sonoda T, Kojima-Yuasa A. Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ. PLoS One. 2021 Mar 8;16(3):e0248073. doi: 10.1371/journal.pone.0248073. PMID: 33684156; PMCID: PMC7939365.
  56. Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon MS, Nakayama T. Antioxidant activity of polyphenols in carob pods. J Agric Food Chem. 2002 Jan 16;50(2):373-7. doi: 10.1021/jf010938r. PMID: 11782210.
  57. Makris DP, Kefalas P. Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol. 2004;42:105-108.
  58. Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R. Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem. 2004 Jun 16;52(12):3784-91. doi: 10.1021/jf030660y. PMID: 15186098.
  59. El Hajaji H, Lachkar N, Alaoui K, Cherrah Y, Farah A, Ennabili A, El Bali B, Lachkar M. Antioxidant activity, phytochemical screening, and total phenolic content of extracts from three genders of carob tree barks growing in Morocco. Arab J Chem. 2011;4:321-324. doi: 10.1016/j.arabjc.2010.06.053.
  60. Custódio L, Escapa AL, Fernandes E, Fajardo A, Aligué R, Alberício F, Neng N, Nogueira JM, Romano A. Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr. 2011 Mar;66(1):78-84. doi: 10.1007/s11130-011-0214-8. PMID: 21399924.
  61. Rtibi K, Jabri MA, Selmi S, Souli A, Sebai H, El-Benna J, Amri M, Marzouki L. Carob pods (Ceratonia siliqua L.) inhibit human neutrophils myeloperoxidase and in vitro ROS-scavenging activity. RSC Adv. 2015;5:84207-84215. doi: 10.1039/C5RA14719K.
  62. Roseiro LB, Tavares CS, Roseiro JC, Rauter AP. Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): Optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crops Prod. 2013:44:119-126. doi: 10.1016/j.indcrop.2012.11.006.
  63. Vitali Čepo D, Mornar A, Nigović B, Kremer D, Radanović D, Dragojević IV. Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT-Food Sci Technol. 2014:58:578-586. doi: 10.1016/j.lwt.2014.04.004.
  64. Boublenza I, Lazouni HA, Ghaffari L, Ruiz K, Fabiano-Tixier AS, Chemat F. Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.). J Food Qual. 2017. doi: 10.1155/2017/4193672.
  65. Grigoriou AM, Pinakoulaki E. Linking the Dynamic Changes in the In Vitro Antioxidant Activity of Carob Kibbles upon Roasting to the Chemical and Structural Changes Revealed by FTIR Spectroscopy. Antioxidants (Basel). 2021 Dec 20;10(12):2025. doi: 10.3390/antiox10122025. PMID: 34943128; PMCID: PMC8698282.
  66. Rtibi K, Jabri MA, Selmi S, Sebai H, Amri M, El-Benna J, Marzouki L. Ceratonia siliqua leaves exert a strong ROS-scavenging effect in human neutrophils, inhibit myeloperoxydase in vitro and protect against intestinal fluid and electrolytes secretion in rats. RSC Adv. 2016;6:65483-65493. doi:10.1039/c6ra11297h.
  67. El Hajaji H, Lachkar N, Alaoui K, Cherrah Y, Farah A, Ennabili A, El Bali B, Lachkar M. Antioxidant properties and total phenolic content of three varieties of carob tree leaves from Morocco. Rec Nat Prod. 2010;4:193-204.
  68. Dallali S, Aloui F, Selmi H, Sebei H. Comparison of the chemical composition and the antioxidant activity of the leaves of Carob tree (Ceratonia siliqua L.) collected in three sites of Djebel Zaghouan (Tunisia). J New Sci Agric Biotechnol. 2018;21;3429-3438.
  69. Petkova N, Petrova I, Ivanov I, Mihov R, Hadjikinova R, Ognyanov M, Nikolova V. Nutritional and antioxidant potential of carob (Ceratonia siliqua) flour and evaluation of functional properties of its polysaccharide fraction. J Pharm Sci Res. 2017;9:2189-2195.
  70. Ydjedd S, Bouriche S, López-Nicolás R, Sánchez-Moya T, Frontela-Saseta C, Ros-Berruezo G, Rezgui F, Louaileche H, Kati DE. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. J Agric Food Chem. 2017 Feb 1;65(4):827-835. doi: 10.1021/acs.jafc.6b05103. Epub 2017 Jan 17. PMID: 28094929.
  71. Ydjedd S, Chaalal M, Richard G, Kati DE, López-Nicolás R, Fauconnier ML, Louaileche H. Assessment of antioxidant potential of phenolic compounds fractions of Algerian Ceratonia siliqua L. pods during ripening stages. Int Food Res J. 2017;24:2041-2049.
  72. Čepo DV, Jug M, Rajković, MG, Jablan J. Formulation of a nutraceutical derived from carob: β-cyclodextrin encapsulation of antioxidants from carob pod. J Food Nutr Res. 2017;56:48-60.
  73. Belhocine M, Sakmeche C, Azzouz F. Antioxidant activity and gastro-protective effets of carob podsa queous extracts on indomethacin-induced gastric ulcer in wistar rats. Int J Biosci. 2018;12:48-69. doi: 10.12692/ijb/12.6.48-69.
  74. Goulas V, Georgiou E. Utilization of Carob Fruit as Sources of Phenolic Compounds with Antioxidant Potential: Extraction Optimization and Application in Food Models. Foods. 2019 Dec 24;9(1):20. doi: 10.3390/foods9010020. PMID: 31878230; PMCID: PMC7022565.
  75. Ben Othmen K, Elfalleh W, Lachiheb B, Haddad M. Evolution of phytochemical and antioxidant activity of Tunisian carob (Ceratonia siliqua L.) pods during maturation. EuroBiotech J. 2019;3:135-142. doi: 10.2478/ebtj-2019-0016.
  76. Kyriacou MC, Antoniou C, Rouphael Y, Graziani G, Kyratzis A. Mapping the Primary and Secondary Metabolomes of Carob (Ceratonia siliqua L.) Fruit and Its Postharvest Antioxidant Potential at Critical Stages of Ripening. Antioxidants (Basel). 2021 Jan 5;10(1):57. doi: 10.3390/antiox10010057. PMID: 33466561; PMCID: PMC7824902.
  77. Vekiari AS, Ouzounidou G, Gork G, Ozturk M, Asfi M. Compositional changes of major chemical compounds in Greek carob pods during development. Bull Chem Soc Ethiop. 2012;26:343-351. doi: 10.4314/bcse.v26i3.3.
  78. Benchikh Y, Paris C, Louaileche H, Charbonnel C, Ghoul M, Chebil L. Comparative characterization of green and ripe carob (Ceratonia siliqua L.): physicochemical attributes and phenolic profile. J Food Sci Technol. 2016;1:85-91.
  79. El Batal H, Hasib A, Dehbi F, Zaki N, Ouatmane A, Boulli A. Assessment of nutritional composition of Carob pulp (Ceratonia siliqua L.) collected from various locations in Morocco. J Mater Environ Sci. 2016;7:3278-3285.
  80. Simsek S, Ozcan MM, Al Juhaimi F, ElBabiker E, Ghafoor K. Amino acid and sugar contents of wild and cultivated carob (Ceratonia siliqua) pods collected in different harvest periods. Chem. Nat Compd. 2017;53:1008-1009. doi: 10.1007/s10600-017-2187-9.
  81. Ben Othmen K, Garcia‑Beltran JM, Elfalleh W, Haddad M, Esteban MA. Phytochemical compounds and biological properties of carob pods (Ceratonia siliqua L.) extracts at different ripening stages. Waste Biomass Valorization. 2021;12:3. doi: 10.1007/s12649-021-01352-x.
  82. Rtibi K, Marzouki K, Salhi A, Sebai H. Dietary supplementation of carob and whey modulates gut morphology, hemato-biochemical indices, and antioxidant biomarkers in rabbits. J Med Food. 2021 Oct;24(10):1124-1133. doi: 10.1089/jmf.2020.0185. Epub 2021 Mar 18. PMID: 33739870.
  83. Jambi HA. Effect of roasting process on polyphenols content of Carob powder. Life Sci J. 2015;12:1-5.
  84. Şahin H, Topuz A, Pischetsrieder M, Özdemir F. Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol. 2009;230:155-161. doi: 10.1007/s00217-009-1152-7.
  85. Boublenza I, Lazouni HA, Ghaffari L, Ruiz K, Fabiano-Tixier AS, Chemat F. Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.). J Food Qual. 2017. doi: 10.1155/2017/4193672.
  86. Sadat SS, Mohammadi S, Sazegar G, Fazel A, Ebrahimzadeh A, Mobarhan MG, Beheshti F, Attari SS, Tavallaei S. Effects of carob fruit extract on spermatogenesis, antioxidant status, and apoptosis in adult male mice. Pharm Sci. 2019;25:184-189. doi: 10.15171/PS.2019.28.
  87. Nemati Z, Dehgani P, Besharati M, Amirdahri S. Dietary carob fruit (Ceratonia siliqua L.) supplementation improves spermatogenesis, semen quality and embryonic death via antioxidant effect in aging broiler breeder roosters. Anim Reprod Sci. 2022 Apr;239:106967. doi: 10.1016/j.anireprosci.2022.106967. Epub 2022 Mar 12. PMID: 35299115.
  88. Abidar S, Boiangiu RS, Dumitru G, Todirascu-Ciornea E, Amakran A, Cioanca O, Hritcu L, Nhiri M. The Aqueous Extract from Ceratonia siliqua Leaves Protects Against 6-hydroxydopamine in Zebrafish: Understanding the underlying mechanism. Antioxidants (Basel). 2020 Apr 8;9(4):304. doi: 10.3390/antiox9040304. Erratum in: Antioxidants (Basel). 2020 Jun 09;9(6): PMID: 32276477; PMCID: PMC7222174.
  89. de Falco B, Grauso L, Fiore A, Bonanomi G, Lanzotti V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochem Anal. 2022 Jul;33(5):696-709. doi: 10.1002/pca.3121. Epub 2022 Mar 30. PMID: 35354224.
  90. Yilmaz E. Effect of dietary carob (Ceratonia siliqua) syrup on blood parameters, gene expression responses and ammonia resistance in tilapia (Oreochromis niloticus). Aquac Res. 2020;51:1903-1912. doi: 10.1111/are.14540.
  91. Fidan H, Stankov S, Petkova N, Petkova Z, Iliev A, Stoyanova M, Ivanova T, Zhelyazkov N, Ibrahim S, Stoyanova A, Ercisli S. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol. 2020 Jul;57(7):2404-2413. doi: 10.1007/s13197-020-04274-z. Epub 2020 Jan 31. PMID: 32549590; PMCID: PMC7270304.
  92. Spoljaric D, Marencic D, Benkovic M, Spoljaric B, Cvitanovic AB, Mrsic G, Vlahovic K, Popovic M, Srecec S, Stolic I. Effect of dietary carob wholemeal on blood parameters in weaned pigs. Vet Arh. 2019;89:351-366. doi: 10.24099/vet.arhiv.0314.
  93. Chait YA, Gunenc A, Bendali F, Hosseinian F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. Lwt-Food Sci Technol. 2020;117:108623. doi: 10.1016/j.lwt.2019.108623.
  94. Goulas V, Hadjisolomou A. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion, LWT-Food Sci Technol. 2018;101:269-275. doi: 10.1016/j.lwt.2018.11.003.
  95. Custódio L, Escapa AL, Patarra J, Aligué R, Alberício F, Neng NR, Florencio-Norueira JM, Romano A. Sapwood of carob tree (Ceratonia siliqua L.) as a potential source of bioactive compounds. Rec Nat Prod. 2013;7:225-229.
  96. Souli A, Sebai H, Chehimi L, Rtibi K, Tounsi H, Boubaker S, Sakly M, El-Benna J, Amri M. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol Ind Health. 2015 Sep;31(9):802-10. doi: 10.1177/0748233713475506. Epub 2013 Jan 30. PMID: 23363576.
  97. Mekhoukhe A, Kicher H, Ladjouzi A, Medouni-Haroune L, Brahmi F, Medouni-Adrar S, Madani K. Antioxidant activity of carob seeds and chemical composition of their bean gum by- products. J Complement Integr Med. 2018 Aug 15;16(1). doi: 10.1515/jcim-2017-0158. PMID: 30110252.
  98. de la Fuente-Fernández M, González-Hedström D, Amor S, Tejera-Muñoz A, Fernández N, Monge L, Almodóvar P, Andrés-Delgado L, Santamaría L, Prodanov M, Inarejos-García AM, García-Villalón AL, Granado M. Supplementation with a carob (Ceratonia siliqua L.) fruit extract attenuates the cardiometabolic alterations associated with metabolic syndrome in mice. Antioxidants (Basel). 2020 Apr 21;9(4):339. doi: 10.3390/antiox9040339. PMID: 32326269; PMCID: PMC7222348.
  99. Chait YA, Gunenc AG, Bendali FB, Hosseinian F. Functional fermented carob milk: Probiotic variability and polyphenolic profile. J Food Bioact. 2021;14:114-125. doi: 10.31665/JFB.2021.14273.
  100. Ibrahim RM, Abdel-Salam FF, Farahat E. Utilization of carob (Ceratonia siliqua L.) extract as functional ingredient in some confectionery products. Food Nutr Sci. 2020:11:757-772. doi: 10.4236/fns.2020.118054.
  101. Wahby AF, Mahdy ESM, EL-mezayen HA Salama WH, Ebrahim NM, Abdel-Aty AM, Fahmy AS. Role of hyaluronidase inhibitors in the neutralization of toxicity of Egyptian horned viper Cerastes cerastes venom. J Genet Eng Biotechnol. 2012;10:213-219. doi: 10.1016/j.jgeb.2012.10.001.
  102. Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Pérez-Olleros L. Insoluble carob fiber rich in polyphenols lowers totaland ldl cholesterol in hypercholesterolemic subjects. Plant Foods Hum Nutr. 2010;65:50-56. doi: 10.1007/s11130-009-0153-9.
  103. Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N. Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α. J Nutr. 2014;144:1378-1384. doi: 10.3945/jn.114.196113.
  104. Ghazi I, Zefzoufi M, Siniti M, Fdil R, Elattari H. Corrosion inhibition of carob pod pulp (Ceratonia siliqua L.) on carbon steel surface C38 in hydrochloric acid. J Bio Tribocorros. 2022;8:31. doi: 10.1007/s40735-022-00630-y.
  105. ElAkhdar N, Bawab R, Borjac J. Effect of Ceratonia siliqua and Cucurbita pepo seeds extracts on spermatogenesis in male mice. BAU J Health Wellbeing. 2020;3.
  106. Higazy M, ELDiffrawy E, Zeitoun M, Shaltout O, El-Yazeed A. Nutrients of carob and seed powders and its application in some food products. J Ad Agric Res. 2018;23:130-147.
  107. Richane A, Ismail HB, Darej C, Attia K, Moujahed N. Potential of Tunisian carob pulp as feed for ruminants: chemical composition and in vitro assessment. Trop Anim Health Prod. 2022;54:58. doi: 10.1007/s11250-022-03071-4.
  108. Gomaa A, Willis S, Verghese M, Boateng J. Probiotic fermentation of konjac and carob pods ceratonia siliqua and observation of related antioxidant activity. Am J Food Technol. 2021;16:18-30. doi: 10.3923/ajft.2021.18.30.
  109. Aydin S, Özdemir Y. Development and characterization of carob flour based functional spread for increasing use as nutritious snack for children. J Food Qual. 2017. doi: 10.1155/2017/5028150.
  110. Kulcan AA, Zoua Assoumou UT, Aygün M, Kuzu S, Yildiz D, Kaya N, Hacıoğlu A, Karhan M. Impact of carob extract supplementation on chemical and sensory properties of yogurt and ice cream. GIDA J Food. 2021;46:980-991. doi: 10.15237/gida.GD21043.
  111. El-Kholy A. Impact of carob pods powder on the physical and sensory properties of ice cream. Ismailia J Dairy Sci Technol. 2015;2:7-11.
  112. Guler-Akin MB, Goncu B, Akin MS. Some properties of probiotic yoghurt ice cream supplemented with carob extract and whey powder. Adv Microbiol. 2016;6:1010-1020. doi: 10.4236/aim.2016.614095.
  113. Červenka L, Frühbauerová M, Velichová H. Functional properties of muffin as affected by substituing wheat flour with carob powder. Potr Slovak J Food Sci. 2019;13:212-217. doi: 10.5219/1033.
  114. Pawłowska K, Kuligowski M, Jasińska-Kuligowska I, Kidoń M, Siger A, Rudzińska M, Nowak J. Effect of replacing cocoa powder by carob powder in the muffins on sensory and physicochemical properties. Plant Foods Hum Nutr. 2018;73:196-202. doi: 10.1007/s11130-018-0675-0.
  115. Aissa A, Chakroun I, Rejeb R, Ayed MH. Effect of partial dietary substitution of Carob (Ceratonia siliqua L.) to barley grains on diet digestibility in growing rabbits. J New Sci. 2021;79:4580-4585.
  116. Rtibi K, Selmi S, Jabri M-A, Mamadou G, Limas-Nzouzi N, Sebai H, El-Benna J, Marzouki L, Eto B, Amri M. Effects of aqueous extracts from Ceratonia siliqua L. pods on small intestinal motility in rats and jejunal permeability in mice. RSC Adv. 2016;6:44345-44353. doi: 10.1039/c6ra03457h.
  117. Alkhatib AJ. Therapeutic potential of aqueous extract of carob in treating irritable bowel syndrome. Curr Tr Gatsr & Hepatol. 2019;2:170-171. doi: 10.32474/CTGH.2019.02.000141.
  118. Al-Olayan EM, El-Khadragy MF, Alajmi RA, Othman MS, Bauomy AA, Ibrahim SR, Abdel Moneim AE. Ceratonia siliqua pod extract ameliorates Schistosoma mansoni-induced liver fibrosis and oxidative stress. BMC Complement Alternat Med. 2016;16:434. doi: 10.1186/s12906-016-1389-1.
  119. Martić N, Zahorec J, Stilinović N, Andrejić-Višnjić B, Pavlić B, Kladar N, Šoronja-Simović D, Šereš Z, Vujčić M, Horvat O, Rašković A. Hepatoprotective effect of carob pulp flour (Ceratonia siliqua L.) extract obtained by optimized microwave-assisted extraction. Pharmaceutics. 2022;14:657. doi: 10.3390/pharmaceutics14030657.
  120. Rtibi K, Selmi S, Jabri MA, El-Benna J, Amri M, Marzouki L, Sebai H. Protective Effect of Ceratonia siliqua L. Against a Dextran Sulfate Sodium-Induced Alterations in Liver and Kidney in Rat. J Med Food. 2016;19:882-829. doi: 10.1089/jmf.2016.0020.
  121. Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem. 2013;4(1):1-6. doi: 10.1186/2228-5547-4-29.
  122. Javadi F, Yazdi MET, Baghani M, Es-haghi A. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Express. 2019;6:065408. doi: 10.1088/2053-1591/ab08ff.
  123. Tamizhdurai P, Sakthinathan S, Chen SM, Shanthi K, Sivasanker S, Sangeetha P. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite. Sci Rep. 2017;7:46372. doi: 10.1038/srep46372.
  124. Ammari M, Othman H, Rtibi K, Sakly M, Abdelmelek H. The Effects of Carob (Ceratonia siliqua L.) on emotional behavior impairment and metabolic disorders induced by estrogen deficiency in rats. J Med Food. 2020;23:961-966. doi: 10.1089/jmf.2019.0187.
  125. Abdel-Rahman M, Bauomy AA, Salem FEH, Khalifa MA. Carob extract attenuates brain and lung injury in rats exposed to waterpipe smoke, Egypt. J Basic Appl Sci. 2018;5:31-40. doi: 10.1016/j.ejbas.2018.01.004.
  126. Saratsi K, Hoste H, Voutzourakis N, Tzanidakis N, Stefanakis A, Thamsborg SM, Mueller-Harvey I, Hadjigeorgiou I, Sotiraki S. Feeding of carob (Ceratonia siliqua) to sheep infected with gastrointestinal nematodes reduces faecal egg counts and worm fecundity. Vet Parasitol. 2020;284:109200. doi: 10.1016/j.vetpar.2020.109200.
  127. Lall N, Kishore N, Momtaz S, Hussein A, Naidoo S, Nqephe M, Crampton B. Extract from Ceratonia siliqua exhibits depigmentation properties. Phytother Res. 2015;29:1729-1736. doi: 10.1002/ptr.5420.
  128. Flagler M, Osborne R, Mullins L, d'Alessandro B, Tamura M, Ehrman M, Dowdy A, Ellis K. In vivo efficacy of a cosmetic skin care product containing carob extract. J Am Acad Dermatol. 2018;79:165. doi: 10.1016/j.jaad.2018.05.675.
  129. Azab A. D-Pinitol-active natural product from carob with notable insulin regulation. Nutrients. 2022;14:1453. doi: 10.3390/nu14071453.
  130. Nachtomi E, Alumot E. Tannins and polyphenols in carob pods (Ceratonia siliqua). J Sci Food Agric. 1963;14:464-468. doi: 10.1002/jsfa.2740140703.
  131. Joslyn MA, Nishira H, Ito S. Leucoanthocyanins and related phenolic compounds of carob pods (Ceratonia siliqua). J Sci Food Agric. 1968;19:543-550. doi: 10.1002/jsfa.2740190912.
  132. Vaya J, Mahmood S. Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.). BioFactors. 2006;28:169-175. doi: 10.1002/biof.5520280303.
  133. Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, Grúz J, Strnad M. Determination of chemical composition of Anatolian carob pod (Ceratonia siliqua L.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual. 2007;30:1040-1055. doi: 10.1111/j.1745-4557.2007.00176.x.
  134. Ozcan MM, Arslan D, Gökçalik H. Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr. 2007;58:652-658. doi: 10.1080/09637480701395549.
  135. Ayaz FA, Torun H, Glew RH, Bak ZD, Chuang LT, Presley JM, Andrews R. Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum Nutr. 2009;64:286-292. doi: 10.1007/s11130-009-0130-3.
  136. Youssef MKE, El-Manfaloty MM, Ali HM. Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of Carob (Ceratonia siliqua L.). Food Public Health. 2013;3:304-308. doi: 10.5923/j.fph.20130306.06.
  137. Owis AI, El‑Naggar EMB. Identiication and quantication of the major constituents in Egyptian carob extract by liquid chromatography–electrospray ionization-tandem mass spectrometry. Phcog Mag. 2016;12:S1-S6. doi: 10.4103/0973‑1296.176108.
  138. Papaefstathiou E, Agapiou A, Giannopoulos S, Kokkinofta R. Nutritional characterization of carobs and traditional carob products. Food Sci Nutr. 2018;6:2151-2161. doi: 10.1002/fsn3.776.
  139. Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M. Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem. 2007;100:1453-1455. doi: 10.1016/j.foodchem.2005.11.037.
  140. Custódio L, Fernandes E, Romano A. Quantification of polyphenols in carob tree (Ceratonia siliqua L.) fruits and leaves in Portuguese cultivars. Acta Hortic. 2009;841:503-506. doi: 10.17660/ActaHortic.2009.841.69.
  141. El Bouzdoudi B, El Ansari ZN, Mangalagiu I, Mantu D, Badoc A, Lamarti A. Determination of polyphenols content in carob pulp from wild and domesticated Moroccan trees. Am J Plant Sci. 2016;7:1937-1951. doi: 10.4236/ajps.2016.714177.
  142. El Bouzdoudi B, Ammouri N, Joly N, Martin P, Saïdi R, Nejjar El Ansari Z, Bouras M, Badoc A, Lamarti A. Total polyphenols and gallic acid contents in domesticated aarob (Ceratonia siliqua L.) pods and leaves. Int J Pure App Biosci. 2017;5:22-30. doi: 10.18782/2320-7051.5344.
  143. Almanasrah M, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Brazinha C, Crespo J, Kallioinen M, Mänttäri M, Duarte LC. Selective recovery of phenolic compounds and carbohydrates from carob kibbles using water-based extraction. Ind Crops Prod. 2015;70:443-450. doi: 10.1016/j.indcrop.2015.02.051.
  144. Antoniou C, Kyratzis A, Rouphael Y, Stylianou S, Kyriacou MC. Heat-and ultrasound-assisted aqueous extraction of soluble carbohydrates and phenolics from carob kibbles of variable size and source material. Foods. 2020;9:1364. doi: 10.3390/foods9101364.
  145. Fidan H, Petkova N, Sapoundzhieva T, Abanoz EI. Carbohydrate content in Bulgarian and Turkish carob pods and their products. CBU Int Conf Proc. 2016;4:796-802. doi: 10.12955/cbup.v4.855.
  146. Nguyen T, Aparicio M, Saleh MA. Lipid profiling of the carob fruit (Ceratonia siliqua L.) ising GC/LC/QTOF accurate mass spectrometry. Int J Anal Tech. 2017;3:1-6. doi: 10.15226/2577-7831/3/1/00108.
  147. Rizzo V, Tomaselli F, Gentile A, La Malfa S, Maccarone E. Rheological properties and sugar composition of locust bean gum from different carob varieties (Ceratonia siliqua L.). J Agric Food Chem. 2004;52:7925-7930. doi: 10.1021/jf0494332.
  148. Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millán F, Guerrero A, Puppo MC. Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem. 2008;107:675-683. doi: 10.1016/j.foodchem.2007.08.069.
  149. Santonocito D, Granata G, Geraci C, Panico A, Siciliano EA, Raciti G, Puglia C. Carob seeds: Food waste or source of bioactive compounds? Pharmaceutics. 2020;12:1090. doi: 10.3390/pharmaceutics12111090.
  150. Ben Ayache S, Reis FS, Dias MI, Pereira C, Glamočlija J, Soković M, Saafi EB, Ferreira ICFR, Barros L, Achour L. Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity. Food Chem. 2021;351:129263. doi: 10.1016/j.foodchem.2021.129263.
  151. ldahshan OA. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr Res J Biol Sci. 2011;3:52-55.
  152. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol. 2003 Dec;41(12):1727-38. doi: 10.1016/s0278-6915(03)00200-x. PMID: 14563398.
  153. El Bouzdoudi B, Saïdi R, Khalid E, El Mzibri M, Nejjar AZ, El Kbiach ML, Lamarti A. Mineral composition of mature carob (Ceratonia siliqua L.) Pod: A Study. Int J Food Sci Nutr Eng. 2017;7:91-103. doi: 10.5923/j.food.20170704.04.
  154. Şanlı S, Güneşer O, Kılıçarslan S, Şanlı N. Screening of eighteen polyphenolic compounds in different carob pekmez by green capillary electrophoresis method. SN Appl Sci. 2020;2:1-13. doi: 10.1007/s42452-020-2387-y.
  155. Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Continuous and pulsed ultrasound-assisted extraction of carob's antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrason Sonochem. 2021 Aug;76:105630. doi: 10.1016/j.ultsonch.2021.105630. Epub 2021 Jun 12. PMID: 34146974; PMCID: PMC8220390.
  156. Clodoveo ML, Crupi P, Muraglia M, Corbo F. Ultrasound Assisted Extraction of Polyphenols from Ripe Carob Pods (Ceratonia siliqua L.): Combined Designs for Screening and Optimizing the Processing Parameters. Foods. 2022 Jan 21;11(3):284. doi: 10.3390/foods11030284. PMID: 35159436; PMCID: PMC8833885.
  157. Turhan I. Relationship between sugar profile and D-pinitol content of pods of wild and cultivated types of carob bean (Ceratonia siliqua L.) Int J Food Prop. 2014;17:363-370. doi: 10.1080/10942912.2011.631255.
  158. van Rijs P , Fogliano V . Roasting carob flour decreases the capacity to bind glycoconjugates of bile acids. Food Funct. 2020 Jul 1;11(7):5924-5932. doi: 10.1039/d0fo01158d. Epub 2020 Jul 8. PMID: 32638775.
  159. Farag MA, El-Kersh DM. Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. J Adv Res. 2017 Jul;8(4):379-385. doi: 10.1016/j.jare.2017.05.002. Epub 2017 May 10. PMID: 28560053; PMCID: PMC5435580.
  160. Gohar A, Gedara SR, Baraka HN. New acylated flavonol glycoside from Ceratonia siliqua L. seeds. J Med Plants Res. 2009;3(5):424-428.
  161. Kashif Shaeen A, Park SY, Choi M, Kim SY, Yoo AY, Park JK. Antioxidant activity of manno-oligosaccharides derived from the hydrolysis of polymannan by extracellular carbohydrase of Bacillus N3. J Mar Biosci Biotechnol. 2018;10:9-17. doi: 10.15433/ksmb.2018.10.1.009.
  162. Muñoz-Bernal ÓA, Torres-Aguirre GA, Núñez-Gastélum JA, Rosa LA, Rodrigo-García J, Ayala-Zavala JF, Álvarez-Parrilla E. New approach to the interaction between Folin-Ciocalteu reactive and sugars during the quantification of total phenols. TIP Rev Espec Cienc Quím-Biol. 2017;20:23-28. doi: 10.1016/j.recqb.2017.04.003.
  163. Zayapor MN, Abdullah A, Mustapha WAW. Influence of sugar concentration and sugar type on the polyphenol content and antioxidant activity in spiced syrup preparation. Ital J Food Sci. 2021;33:96-105. doi: 10.15586/ijfs.v33i1.1874.
  164. Kopjar M, Lončarić A, Mikulinjak M, Šrajbek Ž, Šrajbek M, Pichler A. Evaluation of Antioxidant Interactions of Combined Model Systems of Phenolics in the Presence of Sugars. Nat Prod Commun. 2016 Oct;11(10):1445-1448. PMID: 30549596.
  165. Lončarić A, Pichler A, Rašić N, Vukoja I, Leventić A, Kopjar M. Influence of phenol and sugar interactions on antioxidant activity of pomegranate juice. Acta Aliment. 2018;47:203-209. doi: 10.1556/066.2018.47.2.9.
  166. Baranowska M, Koziara Z, Suliborska K, Chrzanowski W, Wormstone M, Namieśnik J, Bartoszek A. Interactions between polyphenolic antioxidants quercetin and naringenin dictate the distinctive redox-related chemical and biological behaviour of their mixtures. Sci Rep. 2021 Jun 10;11(1):12282. doi: 10.1038/s41598-021-89314-0. PMID: 34112813; PMCID: PMC8192515.
  167. Thayumanavan G, Jeyabalan S, Fuloria S, Sekar M, Ravi M, Selvaraj LK, Bala L, Chidambaram K, Gan SH, Rani NNIM, Begum MY, Subramaniyan V, Sathasivam KV, Meenakshi DU, Fuloria NK. Silibinin and Naringenin against Bisphenol A-Induced Neurotoxicity in Zebrafish Model-Potential Flavonoid Molecules for New Drug Design, Development, and Therapy for Neurological Disorders. Molecules. 2022 Apr 15;27(8):2572. doi: 10.3390/molecules27082572. PMID: 35458770; PMCID: PMC9025613.
  168. Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019 Sep 25;11(10):2288. doi: 10.3390/nu11102288. PMID: 31557798; PMCID: PMC6835347.
  169. Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016 Jul-Dec;10(20):84-89. doi: 10.4103/0973-7847.194044. PMID: 28082789; PMCID: PMC5214562.
  170. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020 May 14;5(20):11849-11872. doi: 10.1021/acsomega.0c01818. PMID: 32478277; PMCID: PMC7254783.
  171. Deepika, Maurya PK. Health Benefits of Quercetin in Age-Related Diseases. Molecules. 2022 Apr 13;27(8):2498. doi: 10.3390/molecules27082498. PMID: 35458696; PMCID: PMC9032170.
  172. Nguyen TLA, Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules. 2022 Apr 12;27(8):2494. doi: 10.3390/molecules27082494. PMID: 35458691; PMCID: PMC9029217.
  173. hang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y, Swarts M, Yang S, Zhang SB, Zhang K, Ju S, Olek DJ, Schwartz L, Keng PC, Howell R, Zhang L. Okunieff P. Antioxidant Properties of Quercetin. Chapter 38 in “Antioxidant properties of quercetin” Oxygen transport to tissue XXXII. Springer Boston MA; 2011. p.283-289. doi: 10.1007/978-1-4419-7756-4_38.
  174. Sökmen M, Akram Khan M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology. 2016 Jun;24(2-3):81-6. doi: 10.1007/s10787-016-0264-5. Epub 2016 May 17. PMID: 27188988; PMCID: PMC4883448.
  175. Kyratzis AC, Antoniou C, Papayiannis LC, Graziani G, Rouphael Y, Kyriacou MC. Pod Morphology, Primary and Secondary Metabolite Profiles in Non-grafted and Grafted Carob Germplasm Are Configured by Agro-Environmental Zone, Genotype, and Growing Season. Front Plant Sci. 2021 Jan 13;11:612376. doi: 10.3389/fpls.2020.612376. PMID: 33519870; PMCID: PMC7838365.
  176. Mokhtar M, Bouamar S, Di Lorenzo A, Temporini C, Daglia M, Riazi A. The Influence of Ripeness on the Phenolic Content, Antioxidant and Antimicrobial Activities of Pumpkins (Cucurbita moschata Duchesne). Molecules. 2021 Jun 13;26(12):3623. doi: 10.3390/molecules26123623. PMID: 34199320; PMCID: PMC8231950.
  177. Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals' Scavenging Potential of Onion Varieties Planted under Diverse Environmental Conditions. Plants (Basel). 2022 Mar 31;11(7):950. doi: 10.3390/plants11070950. PMID: 35406930; PMCID: PMC9002954.
  178. Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016 Jul 11;21(7):901. doi: 10.3390/molecules21070901. PMID: 27409600; PMCID: PMC6273793.
  179. Bernardo-Gil MG, Roque R, Roseiro LB, Duarte LC, Gírio F, Esteves P. Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids. 2011;59:36-42. doi: 10.1016/j.supflu.2011.08.007.
  180. Pollini L, Blasi F, Ianni F, Grispoldi L, Moretti S, Di Veroli A, Cossignani L, Cenci-Goga BT. Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules. 2022 Mar 16;27(6):1933. doi: 10.3390/molecules27061933. PMID: 35335297; PMCID: PMC8956034.
  181. Kimizuka T, Seki N, Yamaguchi G, Akiyama M, Higashi S, Hase K, Kim YG. Amino Acid-Based Diet Prevents Lethal Infectious Diarrhea by Maintaining Body Water Balance in a Murine Citrobacter rodentium Infection Model. Nutrients. 2021 May 31;13(6):1896. doi: 10.3390/nu13061896. PMID: 34072947; PMCID: PMC8227537.
  182. Karabulut A, Canbola O, Kamalak A. Evaluation of carob Ceratonia siliqua pods as a feed for sheep. Livest Res Rural Dev. 2006;18:104.
  183. obindram MNE, Bognanno M, Luciano G, Lanza M, Biondi L. Carob pulp inclusion in lamb diets: effect on intake, performance, feeding behaviour and blood metabolites. Anim Prod Sci. 2016;56:850-858. doi: 10.1071/AN14733.
  184. Georgieva M, Manios Y, Rasheva N, Pancheva R, Dimitrova E, Schaafsma A. Effects of carob-bean gum thickened formulas on infants' reflux and tolerance indices. World J Clin Pediatr. 2016 Feb 8;5(1):118-27. doi: 10.5409/wjcp.v5.i1.118. PMID: 26862511; PMCID: PMC4737686.
  185. Greffeuille V, Marsset-Baglieri A, Molinari N, Cassan D, Sutra T, Avignon A, Micard V. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature. Food Funct. 2015 Sep;6(9):2996-3005. doi: 10.1039/c5fo00382b. PMID: 26190153.
  186. Jung S, Gu S, Lee SH, Jeong Y. Effect of roasting degree on the antioxidant properties of espresso and drip coffee extracted from Coffea arabica cv. Java Appl Sci. 2021;11:7025. doi:10.3390/app11157025.
  187. Aitken RJ. The changing tide of human fertility. Hum Reprod. 2022 Apr 1;37(4):629-638. doi: 10.1093/humrep/deac011. PMID: 35079808; PMCID: PMC8977063.
  188. Wojsiat J, Korczyński J, Borowiecka M, Żbikowska HM. The role of oxidative stress in female infertility and in vitro fertilization. Postepy Hig Med Dosw (Online). 2017 May 9;71(0):359-366. doi: 10.5604/01.3001.0010.3820. PMID: 28513460.
  189. Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14:470-485. doi: 10.1038/nrurol.2017.69.
  190. Ferramosca A, Lorenzetti S, Di Giacomo M, Lunetti P, Murrieri F, Capobianco L, Dolce V, Coppola L, Zara V. Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants (Basel). 2021 Feb 2;10(2):217. doi: 10.3390/antiox10020217. PMID: 33540578; PMCID: PMC7912874.
  191. Hadi MY, Hameed IH, Ibraheam IA. Ceratonia siliqua: characterization pharmaceutical products and analysis of bioactive compounds: A review. Res J Pharm Technol. 2017;10:3585-3589. doi: 10.5958/0974-360X.2017.00649.7.
  192. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Song X, Ren Y, Shan PF. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020 Sep 8;10(1):14790. doi: 10.1038/s41598-020-71908-9. PMID: 32901098; PMCID: PMC7478957.
  193. Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, Bommer C, Esteghamati A, Ogurtsova K, Zhang P, Colagiuri S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020 Apr;162:108072. doi: 10.1016/j.diabres.2020.108072. Epub 2020 Feb 13. PMID: 32061820.
  194. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016 Sep;24(5):547-553. doi: 10.1016/j.jsps.2015.03.013. Epub 2015 Mar 21. PMID: 27752226; PMCID: PMC5059829.
  195. Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011 Nov 1;15(9):2605-41. doi: 10.1089/ars.2010.3547. Epub 2011 Jun 6. PMID: 21391902.
  196. Li Q, Xing B. A Phytosterol-Enriched Spread Improves Lipid Profile and Insulin Resistance of Women with Gestational Diabetes Mellitus: A Randomized, Placebo-Controlled Double-Blind Clinical Trial. Diabetes Technol Ther. 2016 Aug;18(8):499-504. doi: 10.1089/dia.2016.0103. Epub 2016 May 11. PMID: 27512827.
  197. Gao J, Hu J, Hu D, Yang X. A Role of gallic acid in oxidative damage diseases: A comprehensive review. Nat Prod Commun. 2019;14:1-9. doi: 10.1177/1934578X19874174.
  198. Xiang YF, Ju HQ, Li S, Zhang YJ, Yang CR, Wang YF. Effects of 1,2,4,6-tetra-O-galloyl-β-D-glucose from P. emblica on HBsAg and HBeAg secretion in HepG2.2.15 cell culture. Virol Sin. 2010 Oct;25(5):375-80. doi: 10.1007/s12250-010-3144-y. Epub 2010 Oct 8. PMID: 20960184; PMCID: PMC7090425.
  199. Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Walker LA, Reusch JE, Keller AC. (-)-Epicatechin Improves Vasoreactivity and Mitochondrial Respiration in Thermoneutral-Housed Wistar Rat Vasculature. Nutrients. 2022 Mar 5;14(5):1097. doi: 10.3390/nu14051097. PMID: 35268072; PMCID: PMC8912787.
  200. Fusi J, Bianchi S, Daniele S, Pellegrini S, Martini C, Galetta F, Giovannini L, Franzoni F. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed Pharmacother. 2018 May;101:805-819. doi: 10.1016/j.biopha.2018.03.006. Epub 2018 Mar 22. PMID: 29525677.
  201. Zhang F, Feng J, Zhang J, Kang X, Qian D. Quercetin modulates AMPK/SIRT1/NF-κB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Exp Ther Med. 2020 Dec;20(6):280. doi: 10.3892/etm.2020.9410. Epub 2020 Oct 27. PMID: 33200005; PMCID: PMC7664594.
  202. Wang L, Wu H, Yang F, Dong W. The Protective Effects of Myricetin against Cardiovascular Disease. J Nutr Sci Vitaminol (Tokyo). 2019;65(6):470-476. doi: 10.3177/jnsv.65.470. PMID: 31902859.
  203. Akbulut S, Bayramoglu MM. Reflections of socio-economic and demographic structure of urban and rural on the use of medicinal and aromatic plants: The sample of trabzon province, stud. Ethno-Med. 2014;8:(1)89-100. doi: 10.1080/09735070.2014.11886477.
  204. Akbulut S. Differences in the traditional use of wild plants between rural and urban areas: The sample of adana, stud. Ethno-Med. 2015;9:141-150. doi: 10.1080/09735070.2015.11905430.
  205. Smith BM, Bean SR, Herald TJ, Aramouni FM. Effect of HPMC on the quality of wheat-free bread made from carob germ flour-starch mixtures. J Food Sci. 2012 Jun;77(6):C684-9. doi: 10.1111/j.1750-3841.2012.02739.x. PMID: 22671523.
  206. Dimassi O, Khalife R, Akiki R, Rached M. Effect of different soaking media on the efficiency of carob molasses production. Int J Environ Agric Biotechnol. 2019:4:829-834. doi: 10.22161/ijeab/4.3.33.
  207. Tounsi L, Kchaou H, Chaker F, Bredai S, Kechaou N. Effect of adding carob molasses on physical and nutritional quality parameters of sesame paste. J Food Sci Technol. 2019 Mar;56(3):1502-1509. doi: 10.1007/s13197-019-03640-w. Epub 2019 Feb 19. PMID: 30956330; PMCID: PMC6423243.
  208. Johnson W Jr, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG Jr, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Galactomannans as Used in Cosmetics. Int J Toxicol. 2015 Jul-Aug;34(1 Suppl):35S-65S. doi: 10.1177/1091581815586798. PMID: 26227890.
  209. Cariñanos P, Delgado-Capel M, Maradiaga-Marín MF, Benítez G. Considerations on the allergy-risks related to the consumption of fruits from urban trees in Mediterranean cities. Urban For Urban Green. 2019;45:126303. doi: 10.1016/j.ufug.2019.03.007.
  210. Cariñanos P, Marinangeli F. An updated proposal of the Potential Allergenicity of 150 ornamental Trees and shrubs in Mediterranean Cities. Urban For Urban Green. 2021;63:127218. doi: 10.1016/j.ufug.2021.127218.
  211. Frühbauerová M, Červenka L, Hájek T, Pouzar M, Palarčík J. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding. Food Chem. 2022 May 30;377:131968. doi: 10.1016/j.foodchem.2021.131968. Epub 2021 Dec 29. PMID: 34995960.
  212. Vilas-Boas AM, Brassesco ME, Quintino AC, Vieira MC, Brandão TRS, Silva CLM, Azevedo M, Pintado M. Particle Size Effect of Integral Carob Flour on Bioaccessibility of Bioactive Compounds during Simulated Gastrointestinal Digestion. Foods. 2022 Apr 27;11(9):1272. doi: 10.3390/foods11091272. PMID: 35563995; PMCID: PMC9101685.
  213. Medina-Vera D, Navarro JA, Rivera P, Rosell-Valle C, Gutiérrez-Adán A, Sanjuan C, López-Gambero AJ, Tovar R, Suárez J, Pavón FJ, Baixeras E, Decara J, Rodríguez de Fonseca F. d-Pinitol promotes tau dephosphorylation through a cyclin-dependent kinase 5 regulation mechanism: A new potential approach for tauopathies? Br J Pharmacol. 2022 Jun 27. doi: 10.1111/bph.15907. Epub ahead of print. PMID: 35760415.
  214. Zheng W, Lee SA. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer. 2009;61(4):437-46. doi: 10.1080/01635580802710741. PMID: 19838915; PMCID: PMC2769029.
  215. Nadeem HR, Akhtar S, Ismail T, Sestili P, Lorenzo JM, Ranjha MMAN, Jooste L, Hano C, Aadil RM. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods. 2021 Jun 24;10(7):1466. doi: 10.3390/foods10071466. PMID: 34202792; PMCID: PMC8307633.
  216. Erdogan B, Ozdestan‐Ocak O. Inhibitory effects of carob and propolis extracts on the formation of heterocyclic aromatic amines in beef meatballs cooked with different methods. J Food Process Preserv. 2022;e16623. doi: 10.1111/jfpp.16623.
  217. Ozdemir Y, Ozbek C, Ilhan S. Ice cream cone enriched with carob molasses pulp. J Food Meas Charact. 2022;1-10. doi: 10.1007/s11694-022-01489-w.
  218. Toufeili I, Itani M, Zeidan M, Al Yamani O, Kharroubi S. Nutritional and Functional Potential of Carob Syrup Versus Date and Maple Syrups. Food Technol Biotechnol. 2022 Jun;60(2):266-278. doi: 10.17113/ftb.60.02.22.7419. PMID: 35910270; PMCID: PMC9295627.
  219. Clodoveo ML, Crupi P, Muraglia M, Corbo F. Processing of carob kernels to syrup by ultrasound-assisted extraction. Processes. 2022;10:983. doi: 10.3390/pr10050983.
  220. Peng ZT, Xia YJ, Yashiro T, Gao X, Dong TT, Tsim KW, Wang HY. Novel phenylpropanoids and isoflavone glycoside are isolated and identified from the carob pods (Ceratonia siliqua L.). Nat Prod Res. 2022 May 14:1-7. doi: 10.1080/14786419.2022.2076230. Epub ahead of print. PMID: 35574610.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search