Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Antibacterial Effect of Graphene-Collagen Nanocomposites on Salmonella species

Medicine Group    Start Submission

Iliana A Ivanova*, Dragomira S Stoyanova, Anna Staneva, Madalina Alby-Kaya and Todorka G Vladkova

Volume3-Issue8
Dates: Received: 2022-07-21 | Accepted: 2022-08-10 | Published: 2022-08-15
Pages: 925-929

Abstract

The aim of this report is to summarize the applicability of nanocomposites against clinically significant pathogen Salmonella entherica serotype holeraesius. The antibacterial effect of single SiO2, RGO nanoparticles and combination of Ag decorated RGO, SiO2, RGO and ZnTiO3 were examined. ZnTiO3 nanoparticles were prepared using nonhydrolitic sol-gel method. The various nanoparticles combinations were evaluated, dispersed in type I fibrillary collagen gel with concentration of 2.64 w% in different ratios with nanoparticles. The liophylization process was used to prepare nanocomposite material. Several nanocomposites as Coll: RGO, Coll: Ag/RGO, Ag/ SiO2/RGO, ZnTiO3/ SiO2/RGO, Coll: ZnTiO3 were tested on S. enterica. The formed sterile zones around the disc samples (diameter of 9.0 mm; thickness of 3 mm) were measured in mm (± 0.5). Some of the tested materials have shown antibacterial activity on S. enterica but the other have no effect. The research team relies on an innovative combination of qualities of different nanoparticles which aims synergy and high antibacterial activity with potential application in medical practice.

FullText HTML FullText PDF DOI: 10.37871/jbres1533


Certificate of Publication




Copyright

© 2022 Ivanova IA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ivanova IA, Stoyanova DS, Staneva A, Alby-Kaya M, Vladkova TG. Antibacterial Effect of Graphene-Collagen Nanocomposites on Salmonella species. J Biomed Res Environ Sci. 2022 Aug 15; 3(8): 925-929. doi: 10.37871/jbres1533, Article ID: JBRES1533, Available at: https://www.jelsciences.com/articles/jbres1533.pdf


Subject area(s)

References


  1. Farouk MM, El-Molla A, Salib FA, Soliman YA, Shaalan M. The Role of Silver Nanoparticles in a Treatment Approach for Multidrug-Resistant Salmonella Species Isolates. Int J Nanomedicine. 2020 Sep 23;15:6993-7011. doi: 10.2147/IJN.S270204. PMID: 33061364; PMCID: PMC7520150.
  2. Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol. 2010 May;59(Pt 5):511-520. doi: 10.1099/jmm.0.017715-0. Epub 2010 Jan 21. PMID: 20093376; PMCID: PMC2855384.
  3. Thavanathan J, Huang NM, Thong KL. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Int J Nanomedicine. 2015 Apr 2;10:2711-22. doi: 10.2147/IJN.S74753. PMID: 25897217; PMCID: PMC4396418.
  4. Nokhodchi A, Ghafourian T, Mohammadi G. Salmonella-A Diversified Superbug: Nanotechnology tools for efficient antibacterial delivery to Salmonella. 2012. doi: 10.5772/31045.
  5. Krishna G, Kumar SS, Pranitha V, Alha M, Charaya S. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against Salmonella sp. Int J Pharm Pharm Sci. 2015;7(10):84-88.
  6. Saxena A, Tripathi RM, Singh RP. Biological Synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest Journal of Nanomaterials and Biostructures. 2010;5(2):427-432.
  7. Kurantowicz N, Sawosz E, Jaworski S, Kutwin M, Strojny B, Wierzbicki M, Szeliga J, Hotowy A, Lipińska L, Koziński R, Jagiełło J, Chwalibog A. How graphene family materials affect Listeria monocytogenes and Salmonella enterica strains? 4th International Conference on Clinical Microbiology and Microbial Genomics. 2015. doi: 10.1186/s11671-015-0749-y.
  8. Kuang X, Hao H, Dai M, Wang Y, Ahmad I, Liu Z, Zonghui Y. Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol. 2015 Jun 22;6:602. doi: 10.3389/fmicb.2015.00602. PMID: 26157426; PMCID: PMC4476277.
  9. Estevez MB, Casaux ML, Fraga M, Faccio R, Alborés S. Biogenic Silver Nanoparticles as a Strategy in the Fight Against Multi-Resistant Salmonella enterica Isolated From Dairy Calves. Front Bioeng Biotechnol. 2021 Apr 26;9:644014. doi: 10.3389/fbioe.2021.644014. PMID: 33981689; PMCID: PMC8107374.
  10. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001 Jan 29;70(1-2):1-20. doi: 10.1016/s0168-3659(00)00339-4. PMID: 11166403.
  11. Ranjan A, Pothayee N, Seleem MN, Tyler RD Jr, Brenseke B, Sriranganathan N, Riffle JS, Kasimanickam R. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine. 2009;4:289-97. doi: 10.2147/ijn.s7137. Epub 2009 Dec 29. PMID: 20054433; PMCID: PMC2802042.
  12. Ranjan A, Pothayee N, Seleem M, Jain N, Sriranganathan N, Riffle JS, Kasimanickam R. Drug Delivery using novel nanoplexes against a Salmonella mouse infection model. J Nanopart Res. 2010;12:905-914. doi: 10.1007/s11051-009-9641-y.
  13. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004 Dec;54(6):1019-24. doi: 10.1093/jac/dkh478. Epub 2004 Nov 10. PMID: 15537697.
  14. Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, Ruiz RC, Melo IS, Tasic L, De Souza AO. Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol. 2013 Jan;97(2):775-82. doi: 10.1007/s00253-012-4209-7. Epub 2012 Jun 16. PMID: 22707055.
  15. Sanguiñedo P, Fratila RM, Estevez MB, Martínez de la Fuente J, Grazú V, Alborés S. Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed. Eng. 2018;10:156-164. doi: 10.5101/nbe.v10i2.p156-164.
  16. Irayyif SM, Araghiand AMS, Malla S. Silver nanoparticles and their effect on the biofilm formation in food borne Salmonella species. International Journal of Recent Scientific Research. 2015;6(5):4343-4346.
  17. Rizzello L, Cingolani R, Pompa PP. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond). 2013 May;8(5):807-21. doi: 10.2217/nnm.13.63. PMID: 23656266.
  18. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011 Dec 10;156(2):128-45. doi: 10.1016/j.jconrel.2011.07.002. Epub 2011 Jul 6. PMID: 21763369.
  19. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53. doi: 10.1002/anie.201205923. Epub 2012 Dec 17. PMID: 23255416.
  20. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010 Oct 26;4(10):5731-6. doi: 10.1021/nn101390x. PMID: 20925398.
  21. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene-based antibacterial paper. ACS Nano. 2010 Jul 27;4(7):4317-23. doi: 10.1021/nn101097v. PMID: 20593851.
  22. Santos CM, Tria MC, Vergara RA, Ahmed F, Advincula RC, Rodrigues DF. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun (Camb). 2011 Aug 21;47(31):8892-4. doi: 10.1039/c1cc11877c. Epub 2011 Jun 14. PMID: 21670830.
  23. An X, Ma H, Liu B, Wang J. Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. Journal of Nanomaterials. 2013. doi: 10.1155/2013/373414.
  24. Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat Commun. 2013;4:2646. doi: 10.1038/ncomms3646. PMID: 24212200; PMCID: PMC3831289.
  25. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application. Journal of Composite Materials. 2006;40(17):1511-1575. doi: 10.1177/0021998306067321
  26. Yu C, Li B. Morphology and properties of conducting polyvinylalcohol hydrosulfate/graphite nanosheet composites. Journal of Composite Materials. 2008;42(15):1491-1504. doi: 10.1177/0021998308092200
  27. Ge Y, Schimel JP, Holden PA. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol. 2012 Sep;78(18):6749-58. doi: 10.1128/AEM.00941-12. Epub 2012 Jul 13. PMID: 22798374; PMCID: PMC3426698.
  28. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009 Jan-Feb;74(1):M46-52. doi: 10.1111/j.1750-3841.2008.01013.x. PMID: 19200107.
  29. Stoyanova DS, Ivanova IA, Staneva A, Alby-Kaya M, Vladkova TG. Antifungal potential of some collagen-based nanocomposites Against Candida lusitaniae. Nanosci Technol. 2016;3(1):1-7. doi: 10.15226/2374-8141/3/1/00138.
  30. Albu MG, Titurenku I, Vladkova T. Current Tissue Engineering. 2013;2:119-132.
  31. Shalaby A, Dimitriev Y, Iordanova R, Bachvarova-Nedelcheva A, Iliev Tz. Modified sol-gel synthesis of submicron powders in the system ZnO. J Univ Chem Technol Metall. 2011;46(2):137-142.
  32. Albu MG, Deselnicu V, Ioannidis I, Deselnicu D, Chelaru C. Chemical functionalization and stabilization of type I collagen with organic tanning agents. Korean J of Chem Eng. 2015;32(2):354-361. doi: 10.1007/s11814-014-0197-x
  33. Albu MG, Ghica MV. Spongious collagen-minocycline delivery systems. Farmacia. 2015;63(1):20-25.
  34. Adrian I, Aprodu J, Banu I, Vasile E, Pillan L, Lonita M. Single molecule level investigations on bone morphogenetic proteins binding to graphene. Digest Journal of Nanomaterials and Biostructures. 2014;9(4):1399-1406.
  35. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643-646. doi: 10.1016/S1466-6049(01)00197-0.
  36. Demir E, Creus A, Marcos R. Genotoxicity and DNA repair processes of zinc oxide nanoparticles. J Toxicol Environ Health A. 2014;77(21):1292-303. doi: 10.1080/15287394.2014.935540. PMID: 25268556.
  37. Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI, Cohen Y, Holden PA, Godwin HA. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014 Jan 28;8(1):374-86. doi: 10.1021/nn4044047. Epub 2013 Dec 24. PMID: 24341736.
  38. Sun T, Hao H, Hao WT, Yi SM, Li XP, Li JR. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts. Nanoscale Res Lett. 2014 Feb 27;9(1):98. doi: 10.1186/1556-276X-9-98. PMID: 24572014; PMCID: PMC4015756.
  39. Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano. 2012 Jun 26;6(6):4921-30. doi: 10.1021/nn300425a. Epub 2012 Jun 7. PMID: 22646753; PMCID: PMC4120753.
  40. Yan Z, Xu L, Han J, Wu YJ, Wang W, Yao W, Wu W. Transcriptional and posttranscriptional regulation and endocytosis were involved in zinc oxide nanoparticle-induced interleukin-8 overexpression in human bronchial epithelial cells. Cell Biol Toxicol. 2014 Apr;30(2):79-88. doi: 10.1007/s10565-014-9270-9. Epub 2014 Feb 20. PMID: 24554449.
  41. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015;7(3):219-242. doi: 10.1007/s40820-015-0040-x. Epub 2015 Apr 19. PMID: 30464967; PMCID: PMC6223899.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search