Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Photocatalytic Degradation of Polyphenols and Polyaromatic Amines in Textile Industry Wastewaters by Nano-Cerium Dioxide Doped Titanium Dioxide and the Evaluation of Acute Toxicity Assays with Microtox and Daphnia magna

Environmental Sciences    Start Submission

Rukiye Oztekin* and Delia Teresa Sponza

Volume3-Issue8
Dates: Received: 2022-08-03 | Accepted: 2022-08-08 | Published: 2022-08-09
Pages: 852-866

Abstract

In this study, nano-cerium dioxide doped titanium-dioxide (CeO2-TiO2) Nanocomposites (NCs) was used for the photocatalytic degradation of pollutant parameters (color, polyphenols, polyaromatics) from a textile industry wastewater (TI ww) treatment plant located in Izmir, Turkey, at different operational conditions such as at increasing photocatalytic time (0, 10, 15, 20, 30, 60, 90 and 120 min), at different CeO2-TiO2 mass ratios (1%, 3%, 5%, 10%, 15%, 16%, 25%, 30%, 50%), at the different amounts of CeO2 (1, 3, 5, 8, 10, 15, 20 and 25 mg/L) under 130 W Ultraviolet (UV) and 35 W sun lights irradiations, respectively. Color, polyphenols (quercetin, fisetin, ellargic acid, carminic acid, luteolin, and curcumin) and polyaromatics [2,6-dimethylaniline (2,6-DMA), 2-aminoanisole (MOA), 2,4-toluenediamine (TDA), 2-naphthylamine (NA), 4,40-thiobisbenzenamine (TOA), 3,3-dichlorobenzidine (DCB) and 3,30-dimethoxybenzidine (DMOB)] removal efficiencies were observed between 78% and 99% during photocatalytic experiments, under 130 W UV light, at 15% CeO2-TiO2 NCs, at 21°C, after 30 min irradiation time. 15% CeO2-TiO2 NCs shows the highest photodegradation yield of color under both UV and visible-light irradiation, with maximum photo-degradation rates of 99% and 98.5%, respectively, after 30 min irradiation time. 94.44% maximum Microtox acute toxicity yield was found in CeO2-TiO2 NCs = 20 mg/L, at 5% CeO2 mass ratio, after 150 min photodegradation time at 60oC. 90% maximum Daphnia magna acute toxicity removal was obtained in CeO2-TiO2 NCs = 20 mg/L, at 5% CeO2 mass ratio, after 150 min photodegradation time at 60°C. The results show that the CeO2-TiO2 NCs has a high photocatalytic activity to remove the pollutants from TI ww.

FullText HTML FullText PDF DOI: 10.37871/jbres1524


Certificate of Publication




Copyright

© 2022 Oztekin R, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Oztekin R, Sponza DT. Photocatalytic Degradation of Polyphenols and Polyaromatic Amines in Textile Industry Wastewaters by Nano-Cerium Dioxide Doped Titanium Dioxide and the Evaluation of Acute Toxicity Assays with Microtox and Daphnia magna. J Biomed Res Environ Sci. 2022 Aug 09; 3(8): 852-866. doi: 10.37871/jbres1524, Article ID: JBRES1524, Available at: https://www.jelsciences.com/articles/jbres1524.pdf


Subject area(s)

References


  1. Esplugas S, Yue PL, Pervez MI. Degradation of 4-chlorophenol by photolytic oxidation. Water Res. 1994;28:1323-1328.
  2. Masten SJ, Davies SH. The use of ozonation to degrade organic contaminants in wastewaters. Environ Sci Technol. 1994 Apr 1;28(4):180A-5A. doi: 10.1021/es00053a718. PMID: 22657971.
  3. Besson M, Descorme C, Bernardi M, Gallezot P, di Gregorio F, Grosjean N, Minh DP, Pintar A. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges. Environ Technol. 2010 Dec 1;31(13):1441-7. doi: 10.1080/09593331003628065. PMID: 21214003.
  4. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007 Jul;107(7):2891-959. doi: 10.1021/cr0500535. Epub 2007 Jun 23. PMID: 17590053.
  5. Jain R, Sikarwar S. Semiconductor-mediated photocatalyzed degradation of erythrosine dye from wastewater using TiO2 catalyst. Environ Technol. 2010 Nov;31(12):1403-10. doi: 10.1080/09593331003758789. PMID: 21121463.
  6. Pouretedal HR, Beigy H, Keshavarz MH. Bleaching of Congo red in the presence of ZnS nanoparticles, with dopant of Co2+ ion, as photocatalyst under UV and sunlight irradiations. Environ Technol. 2010 Oct;31(11):1183-90. doi: 10.1080/09593330903414220. PMID: 21046948.
  7. Vohra MS, Selimuzzaman SM, Al-Suwaiyan MS. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH. Environ Technol. 2010 May;31(6):641-54. doi: 10.1080/09593331003596536. PMID: 20540426.
  8. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev. 1995;95:735-758.
  9. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001 Jul 13;293(5528):269-71. doi: 10.1126/science.1061051. PMID: 11452117.
  10. Zheng Y, Shi E, Chen Z, Li W, Hu X. Influence of solution concentration on the hydrothermal preparation of titania crystallites. J Mater Chem. 2001;11:1547-1551.
  11. Yamashita H, Harada H, Misaka J, Takeushi M, Ikeue K, Anpo M. Degradation of propanol diluted in water under visible light irradiation using metal ionimplanted titanium dioxide photocatalysts. Photoch Photobio A. 2002;148:257-261.
  12. Yu JC, Zhang L, Zheng Z, Zhao J. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater. 2003;15:2280-2286.
  13. Wang W, Zhang J, Chen F, He D, Anpo M. Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles. J Colloid Interface Sci. 2008 Jul 1;323(1):182-6. doi: 10.1016/j.jcis.2008.03.043. Epub 2008 Apr 29. PMID: 18448112.
  14. Chen F, Zou W, Qu W, Zhang J. Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun. 2009;10:1510-1513.
  15. Bhargava SK, Tardio J, Prasad J, FÅ‘ger K, Akolekar DB, Grocatt SC. Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res. 2006;45:1221-1258.
  16. Massa P, Ivorra F, Haure P, Medina Cabello F, Fenoglio R. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2-Al2O3 catalysts prepared by different methods. Catal Commun. 2007;8:424-428.
  17. Pavasupree S, Suzuki Y, Pivsa-Art S, Yoshikawa S. Preparation and characterization of mesoporous TiO2-CeO2 nanopowders respond to visible wavelength. J Solid State Chem. 2005;178:128-134.
  18. Morimo T, Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR. Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2 compared to CeO2 or TiO2. Chem Mater. 2006;18:3249-3256.
  19. Li G, Zhang D, Yu JC. Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. Phys Chem Chem Phys. 2009 May 21;11(19):3775-82. doi: 10.1039/b819167k. Epub 2009 Feb 25. PMID: 19421491.
  20. Li M, Zhang S, Lv L, Wang M, Zhang W, Pan B. A thermally stable mesoporous ZrO2-CeO2-TiO2 visible light Photocatalyst. Chem Eng J. 2013;229:118-125.
  21. Pirkarami A, Olya ME, Farshid SR. UV/Ni-TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resour Ind. 2014;5:9-20.
  22. Shao X, Lu W, Zhang R, Pan F. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Scientific Reports. 2018;3:1-9 doi: 10.1038/srep03018.
  23. Subramonian W, Wu TY. Effect of enhancers and inhibitors on photocatalytic sunlight treatment of Methylene Blue, Water. Air. Soil. Poll. 225 (2014) 1922-1937.
  24. Ji P, Tian B, Chen F, Zhang J. CeO2 mediated photocatalytic degradation studies of C.I. acid orange 7. Environ Technol. 2012 Feb-Mar;33(4-6):467-72. doi: 10.1080/09593330.2011.579183. PMID: 22629618.
  25. Balavi H, Samadanian-Isfahani S, Mehrabani-Zeinabad M, Edrissi M. Preparation and optimization of CeO2 nanoparticles and its application in photocatalytic degradation of Reactive Orange 16 dye. Powder Technol. 2013;249:549-555.
  26. Zhao B, Shi B, Zhang X, Cao X, Zhang Y. Catalytic wet hydrogen peroxide oxidation of H-acid in aqueous solution with, TiO2-CeO2 and Fe/TiO2-CeO2 catalysts. Desalination. 2011;268:55-59.
  27. Liu H, Wang M, Wang Y, Liang Y, Cao W, Su Y. Ionic liquid-templated synthesis of mesoporous CeO2-TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photoch Photobio A. 2011;223:157-164.
  28. Ameen S, Akhtar MS, Seo HK, Shin HS, Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chem Eng J. 2014;247:193-198.
  29. Baird RB, Eaton AD, Rice EW, editors. Standard Methods for the Examination of Water and Wastewater. 23rd ed. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). American Public Health Association 800 I Street, NW Washington DC: USA: 20001-3770. 2017.
  30. Liu B, Zhao X, Zhang N, Zhao Q, He X, Feng J. Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surf Sci. 2005;595:203-211.
  31. Riss A, Elser MJ, Bernardi J, Diwald O. Stability and photoelectronic properties of layered titanate nanostructures. J Am Chem Soc. 2009 May 6;131(17):6198-206. doi: 10.1021/ja810109g. PMID: 19358537.
  32. Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT Jr. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J Phys Chem B. 2005 Aug 18;109(32):15454-62. doi: 10.1021/jp058101c. PMID: 16852960.
  33. Yang H, Zhang K, Shi R. Sol-gel synthesis and photocatalytic activity of CeO2/TiO2 nanocomposites. J Am Cer Soc. 2007;90:1370-1374.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search