Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Functional Foods: A Glimpse into Beneficial Microorganisms in Gastrointestinal Diseases

Medicine Group    Start Submission

Daniela Castillo, Mario Cruz, Rosa M Rodriguez-Jasso, Hector Ruiz and Ruth Belmares*

Volume3-Issue7
Dates: Received: 2022-07-26 | Accepted: 2022-07-30 | Published: 2022-07-31
Pages: 833-841

Abstract

Gut microbiota the “virtual organ” plays a contributory role in the maintaining of human health as well as in the development of gastrointestinal diseases due to intervenes in digestion and metabolism. In this context is relevant to clarify the mechanisms of interaction of the intestinal microbiota with macromolecules for potential therapeutic applications and how bacterial growth or inhibition affect human health. This article reviewed the interaction of beneficial gut microbiota bacteria such as the bifidobacterium, eubacterium, roseburia, bacteroides, faecalibacteriummand lactobacillus genera with food macromolecules (carbohydrates, protein, lipids). It also summarized the way in which gastrointestinal diseases and gut microbiota are related in diabetes, obesity and irritable bowel syndrome as well as the perspectives of how functional foods such as prebiotics, probiotics and synbiotics can be used as a dietary therapy for the modulation of gut microbiota.

FullText HTML FullText PDF DOI: 10.37871/jbres1520


Certificate of Publication




Copyright

© 2022 Castillo D, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Castillo D, Cruz M, Rodríguez-Jasso RM, Ruiz H, Belmares R. Functional Foods: A Glimpse into Beneficial Microorganisms in Gastrointestinal Diseases. J Biomed Res Environ Sci. 2022 July 30; 3(7): 833-841. doi: 10.37871/jbres1520, Article ID: JBRES1520, Available at: https://www.jelsciences.com/articles/jbres1520.pdf


Subject area(s)

References


  1. Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361-80. doi: 10.1146/annurev-med-012510-175505. PMID: 21226616.
  2. Bordalo Tonucci L, Dos Santos KM, De Luces Fortes Ferreira CL, Ribeiro SM, De Oliveira LL, Martino HS. Gut microbiota and probiotics: Focus on diabetes mellitus. Crit Rev Food Sci Nutr. 2017 Jul 24;57(11):2296-2309. doi: 10.1080/10408398.2014.934438. PMID: 26499995.
  3. Vemuri R, Shankar EM, Chieppa M, Eri R, Kavanagh K. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms. 2020 Mar 28;8(4):483. doi: 10.3390/microorganisms8040483. PMID: 32231141; PMCID: PMC7232386.
  4. Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr. 2021;61(19):3211-3232. doi: 10.1080/10408398.2020.1793728. Epub 2020 Jul 25. PMID: 32715724.
  5. Van den Abbeele P, Verstraete W, El Aidy S, Geirnaert A, Van de Wiele T. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microb Biotechnol. 2013 Jul;6(4):335-40. doi: 10.1111/1751-7915.12049. Epub 2013 Apr 18. PMID: 23594389; PMCID: PMC3917468.
  6. Long-Smith C, O'Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:477-502. doi: 10.1146/annurev-pharmtox-010919-023628. Epub 2019 Sep 10. PMID: 31506009.
  7. Mendes-Soares H, Raveh-Sadka T, Azulay S, Edens K, Ben-Shlomo Y, Cohen Y, Ofek T, Bachrach D, Stevens J, Colibaseanu D, Segal L, Kashyap P, Nelson H. Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA Netw Open. 2019 Feb 1;2(2):e188102. doi: 10.1001/jamanetworkopen.2018.8102. PMID: 30735238; PMCID: PMC6484621.
  8. Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: Health benefits with a focus on gut microbiota. Nutr Bull. 2020;45:294-308. doi: 10.1111/nbu.12448.
  9. Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016 Jan 28;164(3):337-40. doi: 10.1016/j.cell.2016.01.013. PMID: 26824647.
  10. Linares DM, Ross P, Stanton C. Beneficial Microbes: The pharmacy in the gut. Bioengineered. 2016;7(1):11-20. doi: 10.1080/21655979.2015.1126015. PMID: 26709457; PMCID: PMC4878258.
  11. Wan MLY, Ling KH, El-Nezami H, Wang MF. Influence of functional food components on gut health. Crit Rev Food Sci Nutr. 2019;59(12):1927-1936. doi: 10.1080/10408398.2018.1433629. Epub 2018 Feb 23. PMID: 29381385.
  12. Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen. 2017 Nov;25(6):912-922. doi: 10.1111/wrr.12607. Epub 2018 Feb 9. PMID: 29315980; PMCID: PMC5854537.
  13. Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci Technol. 2020;295-310. doi: 10.1016/j.tifs.2020.03.006.
  14. González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett. 2013 Mar;340(1):1-10. doi: 10.1111/1574-6968.12056. Epub 2012 Dec 17. PMID: 23181549.
  15. Zheng DW, et al. Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. Adv Mater. 2020. doi: 10.1002/adma.202004529.
  16. Zhang M, et al. Effects of Clostridium butyricum on growth, digestive enzyme activity, antioxidant capacity and gut microbiota in farmed tilapia (Oreochromis niloticus). Aquac Res. 2020. doi: 10.1111/are.15009.
  17. Cani PD, de Vos VM. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front Microbiol. 2017. doi: 10.3389/fmicb.2017.01765.
  18. Machado D, Almeida D, Seabra CL, Andrade JC, Gomes AM, Freitas AC. Uncovering Akkermansia muciniphila resilience or susceptibility to different temperatures, atmospheres and gastrointestinal conditions. Anaerobe. 2020 Feb;61:102135. doi: 10.1016/j.anaerobe.2019.102135. Epub 2019 Dec 14. PMID: 31875576.
  19. Kim HB, Isaacson RE. Salmonella in Swine: Microbiota Interactions. Annu Rev Anim Biosci. 2017 Feb 8;5:43-63. doi: 10.1146/annurev-animal-022516-022834. Epub 2016 Nov 9. PMID: 27860494.
  20. Lopetuso LR, Quagliariello A, Schiavoni M, Petito V, Russo A, Reddel S, Del Chierico F, Ianiro G, Scaldaferri F, Neri M, Cammarota G, Putignani L, Gasbarrini A. Towards a disease-associated common trait of gut microbiota dysbiosis: The pivotal role of Akkermansia muciniphila. Dig Liver Dis. 2020 Sep;52(9):1002-1010. doi: 10.1016/j.dld.2020.05.020. Epub 2020 Jun 20. PMID: 32576522.
  21. La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA, Glowacki R, Pereira G, Workman CT, Arntzen MØ, Pope PB, Martens EC, Hachem MA, Westereng B. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y. PMID: 30796211; PMCID: PMC6385246.
  22. Luo W, Shen Z, Deng M, Li X, Tan B, Xiao M, Wu S, Yang Z, Zhu C, Tian L, Wu X, Meng X, Quan Y, Wang X. Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Mol Med Rep. 2019 Aug;20(2):1007-1016. doi: 10.3892/mmr.2019.10327. Epub 2019 Jun 4. PMID: 31173202; PMCID: PMC6625378.
  23. Ferreira-Halder CV, Faria AVS, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol. 2017 Dec;31(6):643-648. doi: 10.1016/j.bpg.2017.09.011. Epub 2017 Sep 18. PMID: 29566907.
  24. Payling L, Fraser K, Loveday SM, Sims I, Roy N, McNabb W. The effects of carbohydrate structure on the composition and functionality of the human gut microbiota. Trends Food Sci Technol. 2020. doi: 10.1016/j.tifs.2020.01.009.
  25. Scott KP, Duncan SH, Flint HJ. Dietary fibre and the gut microbiota. Nutr Bull. 2008;33:201-211. doi: 10.1111/j.1467-3010.2008.00706.x.
  26. Moraïs S, Ben David Y, Bensoussan L, Duncan SH, Koropatkin NM, Martens EC, Flint HJ, Bayer EA. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol. 2016 Feb;18(2):542-56. doi: 10.1111/1462-2920.13047. Epub 2015 Oct 14. PMID: 26347002.
  27. Mafra D, Barros AF, Fouque D. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol. 2013 Oct;8(10):1317-23. doi: 10.2217/fmb.13.103. PMID: 24059921.
  28. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020 Jun;97(6):1230-1242. doi: 10.1016/j.kint.2020.01.028. Epub 2020 Feb 17. PMID: 32317112.
  29. Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr. 2021 Mar;7(1):11-16. doi: 10.1016/j.aninu.2020.11.003. Epub 2020 Dec 21. PMID: 33997326; PMCID: PMC8110859.
  30. Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol. 2016. doi: 10.1016/j.tifs.2016.08.011.
  31. Wang K, Liang X, Pang Y, Jiang C. The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small Methods. 2020. doi: 10.1002/smtd.201900604.
  32. Liu H, Zhu H, Xia H, Yang X, Yang L, Wang S, Wen J, Sun G. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota. Food Res Int. 2021 Mar;141:110078. doi: 10.1016/j.foodres.2020.110078. Epub 2020 Dec 28. PMID: 33641963.
  33. Hua H, Zhang Y, Zhao F, Chen K, Wu T, Liu Q, Huang S, Zhang A, Jia Z. Celastrol inhibits intestinal lipid absorption by reprofiling the gut microbiota to attenuate high-fat diet-induced obesity. iScience. 2021 Jan 20;24(2):102077. doi: 10.1016/j.isci.2021.102077. PMID: 33598642; PMCID: PMC7868996.
  34. Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, Licht TR, Hansen TH, Nielsen T, Dantoft TM, Linneberg A, Jørgensen T, Vestergaard H, Kristiansen K, Franks PW; IMI-DIRECT consortium, Hansen T, Bäckhed F, Pedersen O. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018 Apr;61(4):810-820. doi: 10.1007/s00125-018-4550-1. Epub 2018 Jan 29. PMID: 29379988; PMCID: PMC6448993.
  35. Ebrahimpour S, Zakeri M, Esmaeili A. Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev. 2020 Sep;62:101095. doi: 10.1016/j.arr.2020.101095. Epub 2020 Jun 11. PMID: 32535272.
  36. Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019 Dec;49:1-5. doi: 10.1016/j.coph.2019.03.011. Epub 2019 Apr 20. PMID: 31015106.
  37. Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Krämer M, Gummesson A, Perkins R, Bergström G, Bäckhed F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020 Sep 1;32(3):379-390.e3. doi: 10.1016/j.cmet.2020.06.011. Epub 2020 Jul 10. PMID: 32652044.
  38. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010 Feb 5;5(2):e9085. doi: 10.1371/journal.pone.0009085. PMID: 20140211; PMCID: PMC2816710.
  39. Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012. doi: 10.1038/nature11450.
  40. Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A, Grieco A. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Curr Cardiol Rep. 2015 Dec;17(12):120. doi: 10.1007/s11886-015-0671-z. PMID: 26497040.
  41. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017 Jul;23(7):850-858. doi: 10.1038/nm.4345. Epub 2017 May 22. PMID: 28530702.
  42. Krumbeck JA, Walter J, Hutkins RW. Synbiotics for Improved Human Health: Recent Developments, Challenges, and Opportunities. Annu Rev Food Sci Technol. 2018 Mar 25;9:451-479. doi: 10.1146/annurev-food-030117-012757. Epub 2018 Jan 18. PMID: 29350558.
  43. Million M, Lagier JC, Yahav D, Paul M. Gut bacterial microbiota and obesity. Clin Microbiol Infect. 2013 Apr;19(4):305-13. doi: 10.1111/1469-0691.12172. Epub 2013 Mar 2. PMID: 23452229.
  44. Stephens RW, Arhire L, Covasa M. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity (Silver Spring). 2018 May;26(5):801-809. doi: 10.1002/oby.22179. PMID: 29687647.
  45. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010 Feb;103(3):335-8. doi: 10.1017/S0007114509992182. Epub 2009 Oct 23. PMID: 19849869.
  46. Herndon CC, Wang YP, Lu CL. Targeting the gut microbiota for the treatment of irritable bowel syndrome. Kaohsiung J Med Sci. 2020 Mar;36(3):160-170. doi: 10.1002/kjm2.12154. Epub 2019 Nov 29. PMID: 31782606.
  47. Liu J, Chey WD, Haller E, Eswaran S. Low-FODMAP Diet for Irritable Bowel Syndrome: What We Know and What We Have Yet to Learn. Annu Rev Med. 2020 Jan 27;71:303-314. doi: 10.1146/annurev-med-050218-013625. PMID: 31986083.
  48. Mei L, et al. Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 2021;21. doi: 10.1186/s12876-021-01693-w.
  49. Liu HN, Wu H, Chen YZ, Chen YJ, Shen XZ, Liu TT. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Dig Liver Dis. 2017 Apr;49(4):331-337. doi: 10.1016/j.dld.2017.01.142. Epub 2017 Jan 21. PMID: 28179092.
  50. Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu Rev Med. 2019 Jan 27;70:335-351. doi: 10.1146/annurev-med-111717-122956. Epub 2018 Nov 7. PMID: 30403550.
  51. Staudacher HM, Scholz M, Lomer MC, Ralph FS, Irving PM, Lindsay JO, Fava F, Tuohy K, Whelan K. Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics. Clin Nutr. 2021 Apr;40(4):1861-1870. doi: 10.1016/j.clnu.2020.10.013. Epub 2020 Oct 23. PMID: 33183883.
  52. Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol. 2020 Mar 25;11:93-118. doi: 10.1146/annurev-food-032519-051708. Epub 2020 Jan 6. PMID: 31905019.
  53. Farag MA, Abdelwareth A, Sallam IE, El Shorbagi M, Jehmlich N, Fritz-Wallace K, Serena Schäpe S, Rolle-Kampczyk U, Ehrlich A, Wessjohann LA, von Bergen M. Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J Adv Res. 2020 Jan 3;23:47-59. doi: 10.1016/j.jare.2020.01.001. PMID: 32071791; PMCID: PMC7016031.
  54. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995 Jun;125(6):1401-12. doi: 10.1093/jn/125.6.1401. PMID: 7782892.
  55. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14. PMID: 28611480.
  56. Lockyer S, Stanner S. Prebiotics - an added benefit of some fibre types. Nutr Bull. 2019;44:74-91. doi: 10.1111/nbu.12366.
  57. Verspreet J, Damen B, Broekaert WF, Verbeke K, Delcour JA, Courtin CM. A Critical Look at Prebiotics Within the Dietary Fiber Concept. Annu Rev Food Sci Technol. 2016;7:167-90. doi: 10.1146/annurev-food-081315-032749. Epub 2016 Jan 6. PMID: 26735801.
  58. Sharma M, Wasan A, Sharma RK. Recent developments in probiotics: an emphasis on Bifidobacterium. Food Biosci. 2021;41. doi: 10.1016/j.fbio.2021.100993.
  59. Ashaolu TJ. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed Pharmacother. 2020 Oct;130:110625. doi: 10.1016/j.biopha.2020.110625. Epub 2020 Aug 11. PMID: 32795926.
  60. Yang R, Zhao X, Wu W, Shi J. Potential of probiotics for use as functional foods in patients with non-infectious gastric ulcer. Trends Food Sci Technol. 2020;111:463-474. doi: 10.1016/j.tifs.2021.02.070.
  61. Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front Microbiol. 2017 May 18;8:846. doi: 10.3389/fmicb.2017.00846. PMID: 28572792; PMCID: PMC5435742.
  62. Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr. 2021;61(13):2207-2224. doi: 10.1080/10408398.2020.1774496. Epub 2020 Jun 10. PMID: 32519883.
  63. Bhathena J, Martoni C, Kulamarva A, Tomaro-Duchesneau C, Malhotra M, Paul A, Urbanska AM, Prakash S. Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian hamsters. PLoS One. 2013;8(3):e58394. doi: 10.1371/journal.pone.0058394. Epub 2013 Mar 12. PMID: 23554890; PMCID: PMC3595252.
  64. Tanida M, Imanishi K, Akashi H, Kurata Y, Chonan O, Naito E, Kunihiro S, Kawai M, Kato-Kataoka A, Shibamoto T. Injection of Lactobacillus casei strain Shirota affects autonomic nerve activities in a tissue-specific manner, and regulates glucose and lipid metabolism in rats. J Diabetes Investig. 2014 Mar 23;5(2):153-61. doi: 10.1111/jdi.12141. Epub 2013 Nov 5. PMID: 24843755; PMCID: PMC4023578.
  65. Awasti N, Tomar SK, Pophaly SD, Poonam, Lule VK, Singh TP, Anand S. Probiotic and functional characterization of bifidobacteria of Indian human origin. J Appl Microbiol. 2016 Apr;120(4):1021-32. doi: 10.1111/jam.13086. PMID: 26849092.
  66. Taniguchi M, Nambu M, Katakura Y, Yamasaki-Yashiki S. Adhesion mechanisms of Bifidobacterium animalis subsp. lactis JCM 10602 to dietary fiber. Biosci Microbiota Food Health. 2021;40(1):59-64. doi: 10.12938/bmfh.2020-003. Epub 2020 Oct 3. PMID: 33520570; PMCID: PMC7817516.
  67. Wang R, Sun J, Li G, Zhang M, Niu T, Kang X, Zhao H, Chen J, Sun E, Li Y. Effect of Bifidobacterium animalis subsp. lactis MN-Gup on constipation and the composition of gut microbiota. Benef Microbes. 2021 Feb 24;12(1):31-42. doi: 10.3920/BM2020.0023. Epub 2020 Dec 14. PMID: 33308038.
  68. Din AU, et al. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem. 2020;79:108353. doi: 10.1016/j.jnutbio.2020.108353.
  69. Fukui H, Oshima T, Tanaka Y, Oikawa Y, Makizaki Y, Ohno H, Tomita T, Watari J, Miwa H. Effect of probiotic Bifidobacterium bifidum G9-1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci Rep. 2018 Aug 17;8(1):12384. doi: 10.1038/s41598-018-30943-3. Erratum in: Sci Rep. 2021 Oct 28;11(1):21554. PMID: 30120330; PMCID: PMC6098190.
  70. Kolida S, Gibson GR. Synbiotics in health and disease. Annu Rev Food Sci Technol. 2011;2:373-93. doi: 10.1146/annurev-food-022510-133739. PMID: 22129388.
  71. Zepeda-Hernández A, Garcia-Amezquita LE, Requena T, García-Cayuela T. Probiotics, prebiotics, and synbiotics added to dairy products: Uses and applications to manage type 2 diabetes. Food Res Int. 2021;14. doi: 10.1016/j.foodres.2021.110208.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search