Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

A New CpG ODN Induces a Fine-Tuning of Innate Response Resulting in Mycobacterium tuberculosis Containment

Medicine Group    Start Submission

Giulia Cappelli, Daniela Giovannini, Annalisa Basso, Annalucia Serafino, Federica Andreola, Vittorio Colizzi and Francesca Mariani*

Volume3-Issue7
Dates: Received: 2022-07-27 | Accepted: 2022-07-30 | Published: 2022-07-30
Pages: 802-818

Abstract

Synthetic oligodeoxynucleotides containing bacterial CpG motifs trigger an immunomodulatory response that correlates with both the CpG hhhexamers and their flanking regions. In this study, four new phosphodiester backbone CpG ODNs were studied in the contest of the innate immune response to Mycobacterium tuberculosis (MTB) infection. Two out of the four CpG ODNs (CpG2 and CpG3) displayed significant and opposite immunomodulatory effects: CpG2 enhanced MTB containment by human Monocyte-Derived-Macrophages (MDM), while CpG3 promoted an increased pathogen growth, higher ROS and Labile Iron Pool (LIP) levels. Accordingly, for iron homeostasis genes transcription, CpG2 and CpG3 induced, respectively, an iron retention and iron release phenotype.

Moreover, CpG2 induced NLRC4 and TRAF6 gene expression and repressed IKK alpha and TREM1 while CpG3 induced PPBP and IL-36 RN and repressed TRAF6, IL-1B, IL-1R2 and NF-kB2. After MTB infection, CpG2 increased the release of soluble TREM1 protein among many others as compared with fewer innate response-associated proteins induced by CpG3. We suggest that CpG2 helps the containment of MTB infection, by inducing an early tight balance of MDM activation players, including LIP, chemokines, ROS and TREM1 receptors. Oppositely, CpG3 induces in MDM an excessive and unregulated inflammatory response unable to contain MTB infection.

FullText HTML FullText PDF DOI: 10.37871/jbres1517


Certificate of Publication




Copyright

© 2022 Cappelli G, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Cappelli G, Giovannini D, Basso A, Serafino A, Andreola F, Colizzi V, Mariani F. A New CpG ODN Induces a Fine-Tuning of Innate Response Resulting in Mycobacterium tuberculosis Containment. J Biomed Res Environ Sci. 2022 July 30; 3(7): 802-818. doi: 10.37871/jbres1517, Article ID: JBRES1517, Available at: https://www.jelsciences.com/articles/jbres1517.pdf


Subject area(s)

References


  1. Liu J, Wei Y, Lu Y, Li Y, Chen Q, Li Y. The discovery of potent immunostimulatory CpG-ODNs widely distributed in bacterial genomes. J Microbiol. 2020 Feb;58(2):153-162. doi: 10.1007/s12275-020-9289-y. Epub 2019 Dec 23. Erratum in: J Microbiol. 2020 Apr;58(4):340. PMID: 31872374.
  2. Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol. 1998 Sep 1;161(5):2428-34. PMID: 9725240.
  3. Ito S, Ishii KJ, Ihata A, Klinman DM. Contribution of nitric oxide to CpG-mediated protection against Listeria monocytogenes. Infect Immun. 2005 Jun;73(6):3803-5. doi: 10.1128/IAI.73.6.3803-3805.2005. PMID: 15908417; PMCID: PMC1111823.
  4. Ito S, Ishii KJ, Shirota H, Klinman DM. CpG oligodeoxynucleotides improve the survival of pregnant and fetal mice following Listeria monocytogenes infection. Infect Immun. 2004 Jun;72(6):3543-8. doi: 10.1128/IAI.72.6.3543-3548.2004. PMID: 15155663; PMCID: PMC415688.
  5. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Röcken M, Wagner H, Heeg K. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol. 1998 Apr 15;160(8):3627-30. PMID: 9558060.
  6. Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, Klinman DM. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol. 1999 Feb 15;162(4):2291-8. PMID: 9973506.
  7. Kim TH, Kim D, Gautam A, Lee H, Kwak MH, Park MC, Park S, Wu G, Lee BL, Lee Y, Kwon HJ. CpG-DNA exerts antibacterial effects by protecting immune cells and producing bacteria-reactive antibodies. Sci Rep. 2018 Nov 2;8(1):16236. doi: 10.1038/s41598-018-34722-y. PMID: 30390012; PMCID: PMC6214913.
  8. Greco E, Santucci MB, Quintiliani G, Papi M, De Spirito M, Fraziano M. CpG oligodeoxynucleotides promote phospholipase D dependent phagolysosome maturation and intracellular mycobacterial killing in M. tuberculosis infected type II alveolar epithelial cells. Cell Immunol. 2009;259(1):1-4. doi: 10.1016/j.cellimm.2009.06.002. Epub 2009 Jun 6. PMID: 19560127.
  9. Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol. 1998 May 15;160(10):4755-61. PMID: 9590221.
  10. Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9305-10. doi: 10.1073/pnas.96.16.9305. PMID: 10430938; PMCID: PMC17777.
  11. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000 Feb 1;164(3):1617-24. doi: 10.4049/jimmunol.164.3.1617. PMID: 10640783.
  12. Freidag BL, Melton GB, Collins F, Klinman DM, Cheever A, Stobie L, Suen W, Seder RA. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect Immun. 2000 May;68(5):2948-53. doi: 10.1128/IAI.68.5.2948-2953.2000. PMID: 10768993; PMCID: PMC97508.
  13. Juffermans NP, Leemans JC, Florquin S, Verbon A, Kolk AH, Speelman P, van Deventer SJ, van der Poll T. CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect Immun. 2002 Jan;70(1):147-52. doi: 10.1128/IAI.70.1.147-152.2002. PMID: 11748176; PMCID: PMC127605.
  14. Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine. 2012;7:2181-95. doi: 10.2147/IJN.S30197. Epub 2012 Apr 27. PMID: 22619554; PMCID: PMC3356174.
  15. Pohar J, Lainšček D, Kunšek A, Cajnko MM, Jerala R, Benčina M. Phosphodiester backbone of the CpG motif within immunostimulatory oligodeoxynucleotides augments activation of Toll-like receptor 9. Sci Rep. 2017 Nov 6;7(1):14598. doi: 10.1038/s41598-017-15178-y. Erratum in: Sci Rep. 2018 Jan 5;8(1):355. Erratum in: Sci Rep. 2018 Mar 6;8(1):4269. PMID: 29097808; PMCID: PMC5668283.
  16. Zimmermann S, Heeg K, Dalpke A. Immunostimulatory DNA as adjuvant: efficacy of phosphodiester CpG oligonucleotides is enhanced by 3' sequence modifications. Vaccine. 2003 Feb 14;21(9-10):990-5. doi: 10.1016/s0264-410x(02)00550-9. PMID: 12547613.
  17. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663-700. doi: 10.1146/annurev.bi.55.070186.003311. PMID: 2874766.
  18. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709-20. doi: 10.1096/fasebj.10.7.8635688. PMID: 8635688.
  19. Yi AK, Chace JH, Cowdery JS, Krieg AM. IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):558-64. PMID: 8543806.
  20. Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules. 2015 May 11;5(2):808-47. doi: 10.3390/biom5020808. PMID: 25970586; PMCID: PMC4496698.
  21. Gackowski D, Kruszewski M, Bartlomiejczyk T, Jawien A, Ciecierski M, Olinski R. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine is positively correlated with the size of the labile iron pool in human lymphocytes. J Biol Inorg Chem. 2002 Apr;7(4-5):548-50. doi: 10.1007/s00775-001-0335-x. Epub 2002 Jan 30. PMID: 11941513.
  22. Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E, Bosurgi L, Campanella A, Brunelli S, Manfredi AA, Apostoli P, Silvestri L, Camaschella C, Rovere-Querini P. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica. 2010 Nov;95(11):1814-22. doi: 10.3324/haematol.2010.023879. Epub 2010 May 29. PMID: 20511666; PMCID: PMC2966902.
  23. Recalcati S, Locati M, Cairo G. Systemic and cellular consequences of macrophage control of iron metabolism. Semin Immunol. 2012 Dec;24(6):393-8. doi: 10.1016/j.smim.2013.01.001. Epub 2013 Jan 30. PMID: 23375134.
  24. Molad Y, Pokroy-Shapira E, Carmon V. CpG-oligodeoxynucleotide-induced TLR9 activation regulates macrophage TREM-1 expression and shedding. Innate Immun. 2013 Dec;19(6):623-30. doi: 10.1177/1753425913476970. Epub 2013 Mar 8. PMID: 23475790.
  25. Yu D, Kandimalla ER, Zhao Q, Bhagat L, Cong Y, Agrawal S. Requirement of nucleobase proximal to CpG dinucleotide for immunostimulatory activity of synthetic CpG DNA. Bioorg Med Chem. 2003 Feb 6;11(3):459-64. doi: 10.1016/s0968-0896(02)00430-3. PMID: 12517441.
  26. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010 Mar 19;140(6):871-82. doi: 10.1016/j.cell.2010.02.029. PMID: 20303877.
  27. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709-60. doi: 10.1146/annurev.immunol.20.100301.064842. Epub 2001 Oct 4. PMID: 11861616.
  28. Grinstein S, Cohen S, Goetz-Smith JD, Dixon SJ. Measurements of cytoplasmic pH and cellular volume for detection of Na+/H+ exchange in lymphocytes. Methods Enzymol. 1989;173:777-90. doi: 10.1016/s0076-6879(89)73050-0. PMID: 2550736.
  29. Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, Papi M, Maulucci G, Delogu G, Martino A, Goletti D, Sarmati L, Andreoni M, Altieri A, Alma M, Caccamo N, Di Liberto D, De Spirito M, Savage ND, Nisini R, Dieli F, Ottenhoff TH, Fraziano M. Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1360-8. doi: 10.1073/pnas.1200484109. Epub 2012 Apr 25. PMID: 22538807; PMCID: PMC3361443.
  30. Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I. Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem. 1997 May 15;248(1):31-40. doi: 10.1006/abio.1997.2126. PMID: 9177722.
  31. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156-9. doi: 10.1006/abio.1987.9999. PMID: 2440339.
  32. Adachi Y, Kindzelskii AL, Petty AR, Huang JB, Maeda N, Yotsumoto S, Aratani Y, Ohno N, Petty HR. IFN-gamma primes RAW264 macrophages and human monocytes for enhanced oxidant production in response to CpG DNA via metabolic signaling: roles of TLR9 and myeloperoxidase trafficking. J Immunol. 2006 Apr 15;176(8):5033-40. doi: 10.4049/jimmunol.176.8.5033. PMID: 16585600.
  33. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013 May;13(5):349-61. doi: 10.1038/nri3423. PMID: 23618831; PMCID: PMC4250048.
  34. Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb). 2004;84(1-2):110-30. doi: 10.1016/j.tube.2003.08.012. PMID: 14670352.
  35. Gingras MC, Lapillonne H, Margolin JF. TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. Mol Immunol. 2002 Mar;38(11):817-24. doi: 10.1016/s0161-5890(02)00004-4. PMID: 11922939.
  36. Kirsch JD, Yi AK, Spitz DR, Krieg AM. Accumulation of glutathione disulfide mediates NF-kappaB activation during immune stimulation with CpG DNA. Antisense Nucleic Acid Drug Dev. 2002 Oct;12(5):327-40. doi: 10.1089/108729002761381302. PMID: 12477282. Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841-8. doi: 10.1073/pnas.97.16.8841. PMID: 10922044; PMCID: PMC34021.
  37. Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE. Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-gamma and hemochromatosis. J Biol Chem. 2002 Dec 20;277(51):49727-34. doi: 10.1074/jbc.M209768200. Epub 2002 Oct 23. PMID: 12399453.
  38. Cairo G, Recalcati S, Mantovani A, Locati M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 2011 Jun;32(6):241-7. doi: 10.1016/j.it.2011.03.007. Epub 2011 Apr 21. PMID: 21514223. Panther E, Dürk T, Ferrari D, Di Virgilio F, Grimm M, Sorichter S, Cicko S, Herouy Y, Norgauer J, Idzko M, Müller T. AMP affects intracellular Ca2+ signaling, migration, cytokine secretion and T cell priming capacity of dendritic cells. PLoS One. 2012;7(5):e37560. doi: 10.1371/journal.pone.0037560. Epub 2012 May 18. PMID: 22624049; PMCID: PMC3356328.
  39. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009 Sep;10(9):943-8. doi: 10.1038/ni.1781. Epub 2009 Aug 19. PMID: 19692995; PMCID: PMC2759071. Kaufmann A, Musset B, Limberg SH, Renigunta V, Sus R, Dalpke AH, Heeg KM, Robaye B, Hanley PJ. "Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem. 2005 Sep 16;280(37):32459-67. doi: 10.1074/jbc.M505301200. Epub 2005 Jul 19. PMID: 16030017.
  40. Wegiel B, Larsen R, Gallo D, Chin BY, Harris C, Mannam P, Kaczmarek E, Lee PJ, Zuckerbraun BS, Flavell R, Soares MP, Otterbein LE. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Invest. 2014 Nov;124(11):4926-40. doi: 10.1172/JCI72853. Epub 2014 Oct 8. PMID: 25295542; PMCID: PMC4347244.
  41. Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008 May 15;3(5):323-30. doi: 10.1016/j.chom.2008.03.007. PMID: 18474359; PMCID: PMC2873178.
  42. Collins A, Marciano D, Graviss E, Shiloh M. Role of Heme Oxygenase in the immune response to Mycobacterium tuberculosis in humans. J Immunol. 2013;190:125.
  43. Soares MP, Marguti I, Cunha A, Larsen R. Immunoregulatory effects of HO-1: how does it work? Curr Opin Pharmacol. 2009 Aug;9(4):482-9. doi: 10.1016/j.coph.2009.05.008. Epub 2009 Jul 6. PMID: 19586801.
  44. Arnoult D, Soares F, Tattoli I, Girardin SE. Mitochondria in innate immunity. EMBO Rep. 2011 Sep 1;12(9):901-10. doi: 10.1038/embor.2011.157. PMID: 21799518; PMCID: PMC3166463.
  45. Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol. 2013 Jul;94(1):123-35. doi: 10.1189/jlb.0612278. Epub 2013 Apr 22. PMID: 23610148.
  46. Nathan C. Points of control in inflammation. Nature. 2002 Dec 19-26;420(6917):846-52. doi: 10.1038/nature01320. PMID: 12490957.
  47. Molad Y, Pokroy-Shapira E, Carmon V. CpG-oligodeoxynucleotide-induced TLR9 activation regulates macrophage TREM-1 expression and shedding. Innate Immun. 2013 Dec;19(6):623-30. doi: 10.1177/1753425913476970. Epub 2013 Mar 8. PMID: 23475790.
  48. Rodríguez-Flores E, Campuzano J, Aguilar D, Hernández-Pando R, Espitia C. The response of the fibrinolytic system to mycobacteria infection. Tuberculosis (Edinb). 2012 Nov;92(6):497-504. doi: 10.1016/j.tube.2012.07.002. Epub 2012 Aug 11. PMID: 22885283.
  49. Radha KS, Sugiki M, Harish Kumar M, Omura S, Maruyama M. Post-transcriptional regulation of plasminogen activator inhibitor-1 by intracellular iron in cultured human lung fibroblasts--interaction of an 81-kDa nuclear protein with the 3'-UTR. J Thromb Haemost. 2005 May;3(5):1001-8. doi: 10.1111/j.1538-7836.2005.01272.x. PMID: 15869597.
  50. González-Cortés C, Diez-Tascón C, Guerra-Laso JM, González-Cocaño MC, Rivero-Lezcano OM. Non-chemotactic influence of CXCL7 on human phagocytes. Modulation of antimicrobial activity against L. pneumophila. Immunobiology. 2012 Apr;217(4):394-401. doi: 10.1016/j.imbio.2011.10.015. Epub 2011 Nov 3. PMID: 22101183.
  51. Goldbach-Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol. 2012 Mar;167(3):391-404. doi: 10.1111/j.1365-2249.2011.04533.x. PMID: 22288582; PMCID: PMC3374271.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search