Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Inflammation and Diabetic Kidney Disease: New Perspectives

Medicine Group    Start Submission

Rico-Fontalvo Jorge*, Daza-Arnedo Rodrigo, Rodriguez-Yanez Tomas, Martinez-Avila Maria Cristina, Cabrales Jose, Cardona-Blanco Maria Ximena, Almanza-Hurtado Amilkar, Uparella-Gulfo Isabella and Vergara-Serpa Oscar

Volume3-Issue7
Dates: Received: 2022-06-29 | Accepted: 2022-07-18 | Published: 2022-07-19
Pages: 779-786

Abstract

Diabetic Kidney Disease (DKD) can occur in approximately 30-40% of the population with type 1 or 2 diabetes mellitus around the world. In the pathogenesis and progression the Diabetic Kidney Disease (DKD), three fundamental axes are distinguished: hemodynamic, metabolic and inflammatory.

The primary purpose of the review is to describe the role and mechanisms related to inflammation in the course of this disease. The pathophysiological mechanisms involved in the development and progression of DKD include different pathways present long before the clinical diagnosis of the disease. Inflammation is a complex mechanism where innate and acquired immunity play an important role, in addition to other factors such as oxidative stress and end products of glycation that in one way or another would be linked to this process of inflammation. We cannot forget the contribution in this axis of inflammation of the well-known aldosterone escape phenomenon. The blockade of the Mineralocorticoid Receptor (MRA) inactivates the action of aldosterone and prevents the genomic and non-genomic response from interacting with the receptor, thus decreasing the degree of inflammation and remodeling in the heart and kidney. Finally, there are many territories to explore in this fascinating universe of inflammation as a mechanism of kidney damage in diabetic patients. Current management of DKD with innovative interventions point to this multitarget approach.

FullText HTML FullText PDF DOI: 10.37871/jbres1513


Certificate of Publication




Copyright

© 2022 Rico-Fontalvo Jorge, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Rico-Fontalvo J, Daza-Arnedo R, Rodriguez-Yanez T, Martinez-Avila MC, José C, Cardona-Blanco MX, Almanza-Hurtado A, Uparella-Gulfo I, Vergara-Serpa O. Inflammation and Diabetic Kidney Disease: New Perspectives. J Biomed Res Environ Sci. 2022 July 19; 3(7): 779-786. doi: 10.37871/jbres1513, Article ID: JBRES1513, Available at: https://www.jelsciences.com/articles/jbres1513.pdf


Subject area(s)

References


  1. Turkmen K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Int Urol Nephrol. 2017 May;49(5):837-844. doi: 10.1007/s11255-016-1488-4. Epub 2016 Dec 29. PMID: 28035619.
  2. Castillo GA, Aroca G, Buelvas J, Buitrago AF, Carballo V, Cárdenas JM, Gómez EA, Fériz K, Lopera JM, Melgarejo E, Restrepo K, Montejo JD, Pinzón JB, Quintero A, Ricoy JE, Rosero R. Recomendaciones para el manejo del riesgo cardiorrenal en el paciente con diabetes mellitus tipo 2. Rev Colomb Cardiol. 2020;27(S3):3-22. doi: 10.1016/j.rccar.2020.07.005.
  3. Rico Fontalvo JE. Guía de práctica clínica para la enfermedad renal diabética. Rev Colomb Nefrol. 2022;8(2). doi: 10.22265/acnef.8.2.561.
  4. Rico Fontalvo JE. Enfermedad renal diabética: de cara a la prevención, diagnóstico e intervención temprana. Rev Colomb Nefrol. diciembre de 2020;7(2):15-16. doi: 10.22265/acnef.7.2.506.
  5. Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed Res Int. 2021 Jul 8;2021:1497449. doi: 10.1155/2021/1497449. PMID: 34307650; PMCID: PMC8285185.
  6. Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020 Apr;16(4):206-222. doi: 10.1038/s41581-019-0234-4. Epub 2020 Jan 15. PMID: 31942046.
  7. Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes. 2003 Oct;52(10):2570-7. doi: 10.2337/diabetes.52.10.2570. PMID: 14514642.
  8. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc. 2018 Aug;117(8):662-675. doi: 10.1016/j.jfma.2018.02.007. Epub 2018 Mar 2. PMID: 29486908.
  9. Ricciardi CA, Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism. 2021 Nov;124:154890. doi: 10.1016/j.metabol.2021.154890. Epub 2021 Sep 22. PMID: 34560098.
  10. De Vriese AS, Stoenoiu MS, Elger M, Devuyst O, Vanholder R, Kriz W, Lameire NH. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. Kidney Int. 2001 Jul;60(1):202-10. doi: 10.1046/j.1523-1755.2001.00787.x. PMID: 11422752.
  11. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005 Jun;54(6):1615-25. doi: 10.2337/diabetes.54.6.1615. PMID: 15919781.
  12. Jung SW, Moon JY. The role of inflammation in diabetic kidney disease. Korean J Intern Med. 2021 Jul;36(4):753-766. doi: 10.3904/kjim.2021.174. Epub 2021 Jul 1. PMID: 34237822; PMCID: PMC8273831.
  13. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011 Sep;60(9):2354-69. doi: 10.2337/db10-1181. Epub 2011 Jul 13. PMID: 21752957; PMCID: PMC3161334.
  14. Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int J Mol Sci. 2021 Oct 6;22(19):10822. doi: 10.3390/ijms221910822. PMID: 34639160; PMCID: PMC8509708.
  15. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008 Feb;93(2):578-83. doi: 10.1210/jc.2007-2185. Epub 2007 Nov 20. PMID: 18029454; PMCID: PMC2243229.
  16. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-Like Receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. abril de 2010;33(4):861-8.
  17. Mulay SR. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019 Jul;96(1):58-66. doi: 10.1016/j.kint.2019.01.014. Epub 2019 Mar 4. PMID: 30922667.
  18. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018 Nov 17;17(1):158. doi: 10.1186/s12943-018-0900-3. PMID: 30447690; PMCID: PMC6240225.
  19. Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006 Jan;55(1):225-33. PMID: 16380497.
  20. Har R, Scholey JW, Daneman D, Mahmud FH, Dekker R, Lai V, Elia Y, Fritzler ML, Sochett EB, Reich HN, Cherney DZ. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia. 2013 May;56(5):1166-73. doi: 10.1007/s00125-013-2857-5. Epub 2013 Feb 15. PMID: 23412605.
  21. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia. 2007 Feb;50(2):471-80. doi: 10.1007/s00125-006-0497-8. Epub 2006 Dec 12. PMID: 17160673.
  22. Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006 Jan;69(1):73-80. doi: 10.1038/sj.ki.5000014. PMID: 16374426.
  23. Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011 Jun;7(6):327-40. doi: 10.1038/nrneph.2011.51. Epub 2011 May 3. PMID: 21537349.
  24. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000 Jun 8;67(3):291-300. doi: 10.1016/s0024-3205(00)00622-6. PMID: 10983873.
  25. Sangoi MB, de Carvalho JA, Tatsch E, Hausen BS, Bollick YS, Londero SW, Duarte T, Scolari R, Duarte MM, Premaor MO, Comim FV, Moretto MB, Moresco RN. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin Chim Acta. 2016 Sep 1;460:178-83. doi: 10.1016/j.cca.2016.06.028. Epub 2016 Jun 25. PMID: 27353644.
  26. Park J, Guan Y, Sheng X, Gluck C, Seasock MJ, Hakimi AA, Qiu C, Pullman J, Verma A, Li H, Palmer M, Susztak K. Functional methylome analysis of human diabetic kidney disease. JCI Insight. 2019 Jun 6;4(11):e128886. doi: 10.1172/jci.insight.128886. PMID: 31167971; PMCID: PMC6629092.
  27. Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, Warram JH, Krolewski AS. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 2009 Jan;4(1):62-70. doi: 10.2215/CJN.03010608. Epub 2008 Dec 10. PMID: 19073786; PMCID: PMC2615709.
  28. Coca SG, Nadkarni GN, Huang Y, Moledina DG, Rao V, Zhang J, Ferket B, Crowley ST, Fried LF, Parikh CR. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J Am Soc Nephrol. 2017 Sep;28(9):2786-2793. doi: 10.1681/ASN.2016101101. Epub 2017 May 5. PMID: 28476763; PMCID: PMC5576932.
  29. Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci. 2008 Jan 1;13:944-55. doi: 10.2741/2734. PMID: 17981602.
  30. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2008 Apr;294(4):F697-701. doi: 10.1152/ajprenal.00016.2008. Epub 2008 Feb 13. PMID: 18272603.
  31. Herder C, Peltonen M, Koenig W, Kräft I, Müller-Scholze S, Martin S, Lakka T, Ilanne-Parikka P, Eriksson JG, Hämäläinen H, Keinänen-Kiukaanniemi S, Valle TT, Uusitupa M, Lindström J, Kolb H, Tuomilehto J. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: results from the Finnish Diabetes Prevention Study. Diabetes. 2006 Aug;55(8):2340-6. doi: 10.2337/db05-1320. PMID: 16873699.
  32. Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol. 2017 May;13(5):311-318. doi: 10.1038/nrneph.2017.31. Epub 2017 Mar 6. PMID: 28262777.
  33. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017 Nov 16;18(12):1288-1298. doi: 10.1038/ni.3858. PMID: 29144501; PMCID: PMC5706779.
  34. Tang S, Zhou W, Sheerin NS, Vaughan RW, Sacks SH. Contribution of renal secreted complement C3 to the circulating pool in humans. J Immunol. 1999 Apr 1;162(7):4336-41. PMID: 10201966.
  35. Rasmussen KL, Nordestgaard BG, Nielsen SF. Complement C3 and Risk of Diabetic Microvascular Disease: A Cohort Study of 95202 Individuals from the General Population. Clin Chem. 2018 Jul;64(7):1113-1124. doi: 10.1373/clinchem.2018.287581. Epub 2018 Mar 9. PMID: 29523638.
  36. Hansen TK, Gall MA, Tarnow L, Thiel S, Stehouwer CD, Schalkwijk CG, Parving HH, Flyvbjerg A. Mannose-binding lectin and mortality in type 2 diabetes. Arch Intern Med. 2006 Oct 9;166(18):2007-13. doi: 10.1001/archinte.166.18.2007. PMID: 17030835.
  37. Yiu WH, Li RX, Wong DWL, Wu HJ, Chan KW, Chan LYY, Leung JCK, Lai KN, Sacks SH, Zhou W, Tang SCW. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol Dial Transplant. 2018 Aug 1;33(8):1323-1332. doi: 10.1093/ndt/gfx336. PMID: 29294056.
  38. Anand G, Vasanthakumar R, Mohan V, Babu S, Aravindhan V. Increased IL-12 and decreased IL-33 serum levels are associated with increased Th1 and suppressed Th2 cytokine profile in patients with diabetic nephropathy (CURES-134). Int J Clin Exp Pathol. 2014 Oct 15;7(11):8008-15. PMID: 25550844; PMCID: PMC4270517.
  39. Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, Zhao Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med (Berl). 2012 Feb;90(2):175-86. doi: 10.1007/s00109-011-0816-5. Epub 2011 Oct 1. PMID: 21964948.
  40. Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol. 2012;35(2):164-74. doi: 10.1159/000334928. Epub 2012 Jan 25. PMID: 22286547.
  41. Selye H. Production of Nephrosclerosis by Overdosage with Desoxycorticosterone Acetate. Can Med Assoc J. 1942 Dec;47(6):515-9. PMID: 20322632; PMCID: PMC1827573.
  42. Arnedo RD, Fontalvo JER, Salcedo NA, Alfaro M, Torrejano DN, Blanco MC, Gulfo UI, Sarabia RM, Franco AE. Finerenone y su papel en la enfermedad renal diabética. Estado del arte. Arch Med. 2022;18(1):5.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search