Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

The Effects of Virtual Gaming on Lower Extremity Function in Children with Cerebral Palsy: A Narrative Review

General Science    Start Submission

Washington M, Owens RA and Moody JA*

Volume3-Issue7
Dates: Received: 2022-07-10 | Accepted: 2022-07-16 | Published: 2022-07-18
Pages: 771-778

Abstract

Background: Investigations into the use of virtual gaming, focussing on its effect on lower extremity function within therapy of children with cerebral palsy is conspicuous by its absence.

Purpose: The aim of this review is to provide an evidence-based account and associated discussion surrounding current research in the area.

Data sources: A literature search of ‘PubMed’, ‘Google Scholar’ and ‘MetSearch’ with relevant keywords, with article inclusion requiring publication between 2011 and 2021 was completed.

Content: Virtual reality influences multiple lower extremity functions when compared to conventional therapy or no therapy. However, information surrounding optimal prescription and participant characteristics is not evident.
Implications: Virtual gaming for use concurrently with other therapies is recommended, with the requirement for further high-quality research to advance the use of virtual gaming further and individual dose response.

FullText HTML FullText PDF DOI: 10.37871/jbres1512


Certificate of Publication




Copyright

© 2022 Washington M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Washington M, Owens RA, Moody JA. The Effects of Virtual Gaming on Lower Extremity Function in Children with Cerebral Palsy: A Narrative Review. J Biomed Res Environ Sci. 2022 July 18; 3(7): 771-778. doi: 10.37871/jbres1512, Article ID: JBRES1512, Available at: https://www.jelsciences.com/articles/jbres1512.pdf


Subject area(s)

References


  1. Krigger KW. Cerebral palsy: An overview. Am Fam Physician. 2006 Jan 1;73(1):91-100. PMID: 16417071.
  2. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: The definition and classification of cerebral palsy april 2006. Dev Med Child Neurol Suppl. 2007 Feb;109:8-14. Erratum in: Dev Med Child Neurol. 2007 Jun;49(6):480. PMID: 17370477.
  3. Johansen T, Strøm V, Simic J, Rike PO. Effectiveness of training with motion-controlled commercial video games on hand and arm function in young people with cerebral palsy: A systematic review and meta-analysis. J Rehabil Med. 2019 Dec 3;52(1):jrm00012. doi: 10.2340/16501977-2633. Epub ahead of print. PMID: 31794044.
  4. Chen Y, Fanchiang HD, Howard A. Effectiveness of virtual reality in children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. Phys Ther. 2018 Jan 1;98(1):63-77. doi: 10.1093/ptj/pzx107. PMID: 29088476; PMCID: PMC6692882.
  5. Weiss PL, Tirosh E, Fehlings D. Role of virtual reality for cerebral palsy management. J Child Neurol. 2014 Aug;29(8):1119-1124. doi: 10.1177/0883073814533007. Epub 2014 May 5. PMID: 24799367.
  6. Chen CL, Chen CY, Liaw MY, Chung CY, Wang CJ, Hong WH. Efficacy of home-based virtual cycling training on bone mineral density in ambulatory children with cerebral palsy. Osteoporos Int. 2013 Apr;24(4):1399-1406. doi: 10.1007/s00198-012-2137-0. Epub 2012 Sep 28. PMID: 23052930.
  7. Weiss PL, Rand D, Katz N, Kizony R. Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil. 2004 Dec 20;1(1):12. doi: 10.1186/1743-0003-1-12. PMID: 15679949; PMCID: PMC546410.
  8. Levac D, Rivard L, Missiuna C. Defining the active ingredients of interactive computer play interventions for children with neuromotor impairments: A scoping review. Res Dev Disabil. 2012 Jan-Feb;33(1):214-223. doi: 10.1016/j.ridd.2011.09.007. Epub 2011 Oct 11. PMID: 22093667.
  9. Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy. 2017 Sep;103(3):245-258. doi: 10.1016/j.physio.2016.08.004. Epub 2016 Sep 27. PMID: 28109566.
  10. Rathinam C, Mohan V, Peirson J, Skinner J, Nethaji KS, Kuhn I. Effectiveness of virtual reality in the treatment of hand function in children with cerebral palsy: A systematic review. J Hand Ther. 2019 Oct-Dec;32(4):426-434.e1. doi: 10.1016/j.jht.2018.01.006. Epub 2018 Jul 14. PMID: 30017414.
  11. Wu J, Loprinzi PD, Ren Z. The rehabilitative effects of virtual reality games on balance performance among children with cerebral palsy: A meta-analysis of randomized controlled trials. Int J Environ Res Public Health. 2019 Oct 28;16(21):4161. doi: 10.3390/ijerph16214161. PMID: 31661938; PMCID: PMC6861947.
  12. Ghai S, Ghai I. Virtual reality enhances gait in cerebral palsy: A training dose-response meta-analysis. Front Neurol. 2019 Mar 26;10:236. doi: 10.3389/fneur.2019.00236. PMID: 30984095; PMCID: PMC6448032.
  13. Cano Porras D, Siemonsma P, Inzelberg R, Zeilig G, Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology. 2018 May 29;90(22):1017-1025. doi: 10.1212/WNL.0000000000005603. Epub 2018 May 2. PMID: 29720544.
  14. Green BN, Johnson CD, Adams A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J Chiropr Med. 2006 Autumn;5(3):101-117. doi: 10.1016/S0899-3467(07)60142-6. PMID: 19674681; PMCID: PMC2647067.
  15. Ferrari R. Writing narrative style literature reviews. Medical Writing. 2015;24(4):230-235.
  16. Smith V, Devane D, Begley CM, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med Res Methodol. 2011 Feb 3;11(1):15. doi: 10.1186/1471-2288-11-15. PMID: 21291558; PMCID: PMC3039637.
  17. Krägeloh-Mann I, Cans C. Cerebral palsy update. Brain Dev. 2009 Aug;31(7):537-544. doi: 10.1016/j.braindev.2009.03.009. Epub 2009 Apr 21. PMID: 19386453.
  18. Porter RS, Kaplan JL. The Merck manual of diagnosis and therapy. Merck Sharp & Dohme Corp. 2011.
  19. Palisano RJ, Avery L, Gorter JW, Galuppi B, McCoy SW. Stability of the gross motor function classification system, manual ability classification system, and communication function classification system. Dev Med Child Neurol. 2018 Oct;60(10):1026-1032. doi: 10.1111/dmcn.13903. Epub 2018 May 4. PMID: 29726578.
  20. Rutz E, Tirosh O, Thomason P, Barg A, Graham HK. Stability of the gross motor function classification system after single-event multilevel surgery in children with cerebral palsy. Dev Med Child Neurol. 2012 Dec;54(12):1109-1113. doi: 10.1111/dmcn.12011. Epub 2012 Oct 16. PMID: 23067343.
  21. Raat H, Botterweck AM, Landgraf JM, Hoogeveen WC, Essink-Bot ML. Reliability and validity of the short form of the child health questionnaire for parents (CHQ-PF28) in large random school based and general population samples. J Epidemiol Community Health. 2005 Jan;59(1):75-82. doi: 10.1136/jech.2003.012914. PMID: 15598731; PMCID: PMC1763365.
  22. Berg N. Non-response bias. Epidemiology. 2005.
  23. Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB. The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil. 1994 Feb;75(2):127-132. PMID: 8311667.
  24. Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964 Apr;192:540-542. PMID: 14143329.
  25. Boyd RN, Graham HK. Objective measurement of clinical findings in the use of botulinum toxin type a for the management of children with cerebral palsy. European Journal of Neurology. 1999;6(S4):23-35.
  26. Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, Langdon K, Namara MM, Paton MC, Popat H, Shore B, Khamis A, Stanton E, Finemore OP, Tricks A, Te Velde A, Dark L, Morton N, Badawi N. State of the evidence traffic lights 2019: Systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3. doi: 10.1007/s11910-020-1022-z. PMID: 32086598; PMCID: PMC7035308.
  27. Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr Dis Treat. 2018 Jun 18;14:1607-1625. doi: 10.2147/NDT.S152543. PMID: 29950843; PMCID: PMC6018484.
  28. Coombe S, Moore F, Bower E. A national survey of the amount of physiotherapy intervention given to children with cerebral palsy in the UK in the NHS. Association of Paediatric Chartered Physiotherapists. 2012;3(1):5-18.
  29. Farr WJ, Green D, Bremner S, Male I, Gage H, Bailey S, Speller S, Colville V, Jackson M, Memon A, Morris C. Feasibility of a randomised controlled trial to evaluate home-based virtual reality therapy in children with cerebral palsy. Disabil Rehabil. 2021 Jan;43(1):85-97. doi: 10.1080/09638288.2019.1618400. Epub 2019 May 25. PMID: 31131641.
  30. Demers M, Fung K, Subramanian SK, Lemay M, Robert MT. Integration of motor learning principles into virtual reality interventions for individuals with cerebral palsy: Systematic review. JMIR Serious Games. 2021 Apr 7;9(2):e23822. doi: 10.2196/23822. PMID: 33825690; PMCID: PMC8060861.
  31. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, Donough SM. Optimising engagement for stroke rehabilitation using serious games. The Visual Computer. 2009;25(12):1085-1099.
  32. Wilson PN, Foreman N, Stanton D. Virtual reality, disability and rehabilitation. Disabil Rehabil. 1997 Jun;19(6):213-220. doi: 10.3109/09638289709166530. PMID: 9195138.
  33. Mitchell LE, Ziviani J, Boyd RN. A randomized controlled trial of web-based training to increase activity in children with cerebral palsy. Dev Med Child Neurol. 2016 Jul;58(7):767-773. doi: 10.1111/dmcn.13065. Epub 2016 Feb 15. PMID: 26877078
  34. Rostami HR, Arastoo AA, Nejad SJ, Mahany MK, Malamiri RA, Goharpey S. Effects of modified constraint-induced movement therapy in virtual environment on upper-limb function in children with spastic hemiparetic cerebral palsy: a randomised controlled trial. NeuroRehabilitation. 2012;31(4):357-365. doi: 10.3233/NRE-2012-00804. PMID: 23232158.
  35. Chen CL, Hong WH, Cheng HY, Liaw MY, Chung CY, Chen CY. Muscle strength enhancement following home-based virtual cycling training in ambulatory children with cerebral palsy. Res Dev Disabil. 2012 Jul-Aug;33(4):1087-1094. doi: 10.1016/j.ridd.2012.01.017. Epub 2012 Feb 28. PMID: 22502833.
  36. Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol Behav. 2006 Apr;9(2):123-128. doi: 10.1089/cpb.2006.9.123. PMID: 16640463.
  37. Cho C, Hwang W, Hwang S, Chung Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J Exp Med. 2016 Mar;238(3):213-218. doi: 10.1620/tjem.238.213. PMID: 26947315.
  38. Rgen M, Akbayrak T, Gunel M, Cankaya O, Guchan Z, Turkyilmaz E. Investigation of the effects of the Nintendo® Wii-Fit training on balance and advanced motor performance in children with spastic hemiplegic cerebral palsy: A Randomized Controlled Trial. Int J Ther Rehabil Res. 2016;5:146.
  39. James S, Ziviani J, Ware RS, Boyd RN. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol. 2015 Jun;57(6):530-538. doi: 10.1111/dmcn.12705. Epub 2015 Feb 27. PMID: 25955443.
  40. Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev Med Child Neurol. 2018 Sep;60(9):866-883. doi: 10.1111/dmcn.13708. Epub 2018 Mar 7. PMID: 29512110.
  41. Gagliardi C, Turconi AC, Biffi E, Maghini C, Marelli A, Cesareo A, Diella E, Panzeri D. Immersive virtual reality to improve walking abilities in cerebral palsy: A pilot study. Ann Biomed Eng. 2018 Sep;46(9):1376-1384. doi: 10.1007/s10439-018-2039-1. Epub 2018 Apr 27. PMID: 29704186.
  42. Tarakci D, Ersoz Huseyinsinoglu B, Tarakci E, Razak Ozdincler A. Effects of nintendo Wii-Fit® video games on balance in children with mild cerebral palsy. Pediatr Int. 2016 Oct;58(10):1042-1050. doi: 10.1111/ped.12942. Epub 2016 Aug 23. PMID: 26858013.
  43. Sajan JE, John JA, Grace P, Sabu SS, Tharion G. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: A pilot, randomized controlled trial. Dev Neurorehabil. 2017 Aug;20(6):361-367. doi: 10.1080/17518423.2016.1252970. Epub 2016 Nov 15. PMID: 27846366.
  44. Massetti T, Silva TDD, Ribeiro DC, Malheiros SRP, Favero FM, Monteiro. Motor learning through virtual reality in cerebral palsy–a literature review. MedicalExpress. 2014;1:302-306.
  45. Krakauer JW. The applicability of motor learning to neurorehabilitation. Oxford textbook of neurorehabilitation. 2015;1:55-64.
  46. Winstein CJ, Kay DB. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage. Prog Brain Res. 2015;218:331-360. doi: 10.1016/bs.pbr.2015.01.004. Epub 2015 Mar 19. PMID: 25890145.
  47. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008 Feb;51(1):S225-239. doi: 10.1044/1092-4388(2008/018). PMID: 18230848.
  48. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther. 2013 Apr-Jun;26(2):94-102; quiz 103. doi: 10.1016/j.jht.2012.12.007. PMID: 23598082; PMCID: PMC3773509.
  49. Golomb MR, Donald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, Huber M, Rabin B, Abdelbaky M, Nwosu ME, Masih M, Burdea GC. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch Phys Med Rehabil. 2010 Jan;91(1):1-8.e1. doi: 10.1016/j.apmr.2009.08.153. PMID: 20103390.
  50. Grecco LA, Duarte Nde A, de Mendonça ME, Pasini H, Lima VL, Franco RC, de Oliveira LV, Carvalho T, Corrêa JC, Collange NZ, Sampaio LM, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: Study protocol for a double-blind randomized controlled clinical trial. BMC Pediatr. 2013 Oct 11;13:168. doi: 10.1186/1471-2431-13-168. PMID: 24112817; PMCID: PMC3852945.
  51. Straker LM, Campbell AC, Jensen LM, Metcalf DR, Smith AJ, Abbott RA, Pollock CM, Piek JP. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health. 2011 Aug 18;11:654. doi: 10.1186/1471-2458-11-654. PMID: 21851587; PMCID: PMC3166932.
  52. Stone J, Gurunathan U, Glass K, Munn Z, Tugwell P, Doi SAR. Stratification by quality induced selection bias in a meta-analysis of clinical trials. J Clin Epidemiol. 2019 Mar;107:51-59. doi: 10.1016/j.jclinepi.2018.11.015. Epub 2018 Nov 17. PMID: 30458262.
  53. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000 Jun;56(2):455-463. doi: 10.1111/j.0006-341x.2000.00455.x. PMID: 10877304.
  54. Guadagnoli MA, Lee TD. Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004 Jun;36(2):212-224. doi: 10.3200/JMBR.36.2.212-224. PMID: 15130871.
  55. Warnier N, Lambregts S, Port IV. Effect of virtual reality therapy on balance and walking in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2020 Nov;23(8):502-518. doi: 10.1080/17518423.2019.1683907. Epub 2019 Nov 1. PMID: 31674852.
  56. Damiano DL. Activity, activity, activity: Rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006 Nov;86(11):1534-1540. doi: 10.2522/ptj.20050397. PMID: 17094192.
  57. Mollenkop H, Marcellini F, Ruoppila I, Flaschenträger P, Gagliardi C, Spazzafumo L. Outdoor mobility and social relationships of elderly people. Archives of gerontology and geriatrics. 1997;24(3):295-310.
  58. Van Ravesteyn NT, Dallmeijer AJ, Scholtes VA, Roorda LD, Becher JG. Measuring mobility limitations in children with cerebral palsy: interrater and intrarater reliability of a mobility questionnaire (MobQues). Dev Med Child Neurol. 2010 Feb;52(2):194-199. doi: 10.1111/j.1469-8749.2009.03341.x. Epub 2009 Sep 11. PMID: 19747207.
  59. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989 Jun;31(3):341-352. doi: 10.1111/j.1469-8749.1989.tb04003.x. PMID: 2753238.
  60. Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM. Physical performance measures in the clinical setting. J Am Geriatr Soc. 2003 Mar;51(3):314-322. doi: 10.1046/j.1532-5415.2003.51104.x. PMID: 12588574.
  61. Salem Y, Gropack SJ, Coffin D, Godwin EM. Effectiveness of a low-cost virtual reality system for children with developmental delay: A preliminary randomised single-blind controlled trial. Physiotherapy. 2012 Sep;98(3):189-195. doi: 10.1016/j.physio.2012.06.003. Epub 2012 Jul 31. PMID: 22898574.
  62. Verschuren O, Wiart L, Hermans D, Ketelaar M. Identification of facilitators and barriers to physical activity in children and adolescents with cerebral palsy. J Pediatr. 2012 Sep;161(3):488-494. doi: 10.1016/j.jpeds.2012.02.042. Epub 2012 Apr 10. PMID: 22494875.
  63. Boyce WF, Gowland C, Rosenbaum PL, Lane M, Plews N, Goldsmith CH, Russell DJ, Wright V, Potter S, Harding D. The gross motor performance measure: Validity and responsiveness of a measure of quality of movement. Phys Ther. 1995 Jul;75(7):603-613. doi: 10.1093/ptj/75.7.603. PMID: 7604079.
  64. Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait post stroke: A systematic review and meta-analysis. Ann N Y Acad Sci. 2020 Oct;1478(1):18-42. doi: 10.1111/nyas.14420. Epub 2020 Jul 13. Erratum in: Ann N Y Acad Sci. 2022 Apr;1510(1):180-181. PMID: 32659041.
  65. Pin TW, Butler PB. The effect of interactive computer play on balance and functional abilities in children with moderate cerebral palsy: A pilot randomized study. Clin Rehabil. 2019 Apr;33(4):704-710. doi: 10.1177/0269215518821714. Epub 2019 Jan 2. PMID: 30599772.
  66. Thomas SS, Buckon CE, Phillips DS, Aiona MD, Sussman MD. Interobserver reliability of the gross motor performance measure: Preliminary results. Dev Med Child Neurol. 2001 Feb;43(2):97-102. doi: 10.1017/s001216220101000160. PMID: 11221911.
  67. Jacobs JM. Management options for the child with spastic cerebral palsy. Orthop Nurs. 2001 May-Jun;20(3):53-59; quiz 59-61. doi: 10.1097/00006416-200105000-00009. PMID: 12025635.
  68. Hodapp M, Vry J, Mall V, Faist M. Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy. Brain. 2009 Jan;132(Pt 1):37-44. doi: 10.1093/brain/awn287. Epub 2008 Nov 3. PMID: 18984603.
  69. Wu YN, Hwang M, Ren Y, Gaebler-Spira D, Zhang LQ. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011 May;25(4):378-385. doi: 10.1177/1545968310388666. Epub 2011 Feb 22. PMID: 21343525.
  70. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003 Aug;83(8):713-721. PMID: 12882612.
  71. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017 Nov 20;11(11):CD008349. doi: 10.1002/14651858.CD008349.pub4. PMID: 29156493; PMCID: PMC6485957.
  72. Ghai S, Driller M, Ghai I. Effects of joint stabilizers on proprioception and stability: A systematic review and meta-analysis. Phys Ther Sport. 2017 May;25:65-75. doi: 10.1016/j.ptsp.2016.05.006. Epub 2016 May 18. PMID: 28262354.
  73. Ghai S, Driller MW, Masters RSW. The influence of below-knee compression garments on knee-joint proprioception. Gait Posture. 2018 Feb;60:258-261. doi: 10.1016/j.gaitpost.2016.08.008. Epub 2016 Aug 9. PMID: 27523397.
  74. Ronsse R, Puttemans V, Coxon JP, Goble DJ, Wagemans J, Wenderoth N, Swinnen SP. Motor learning with augmented feedback: Modality-dependent behavioral and neural consequences. Cereb Cortex. 2011 Jun;21(6):1283-1294. doi: 10.1093/cercor/bhq209. Epub 2010 Oct 28. PMID: 21030486.
  75. Biffi E, Beretta E, Cesareo A, Maghini C, Turconi AC, Reni G, Strazzer S. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf Med. 2017 Mar 23;56(2):119-126. doi: 10.3414/ME16-02-0020. Epub 2017 Jan 24. PMID: 28116417.
  76. Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007 Dec;17(6):657-663. doi: 10.1016/j.jelekin.2007.02.009. Epub 2007 Apr 24. PMID: 17459729.
  77. Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R. MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain Dev. 2006 Sep;28(8):500-506. doi: 10.1016/j.braindev.2006.02.009. Epub 2006 May 11. PMID: 16690238.
  78. Wiley ME, Damiano DL. Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol. 1998 Feb;40(2):100-107. doi: 10.1111/j.1469-8749.1998.tb15369.x. PMID: 9489498.
  79. Damiano DL, Abel MF. Functional outcomes of strength training in spastic cerebral palsy. Arch Phys Med Rehabil. 1998 Feb;79(2):119-125. doi: 10.1016/s0003-9993(98)90287-8. PMID: 9473991.
  80. Desloovere K, Molenaers G, Feys H, Huenaerts C, Callewaert B, Van de Walle P. Do dynamic and static clinical measurements correlate with gait analysis parameters in children with cerebral palsy? Gait Posture. 2006 Nov;24(3):302-313. doi: 10.1016/j.gaitpost.2005.10.008. Epub 2005 Nov 21. PMID: 16303305.
  81. Ross SA, Engsberg JR. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil. 2007 Sep;88(9):1114-1120. doi: 10.1016/j.apmr.2007.06.011. PMID: 17826455.
  82. Verschuren O, Ketelaar M, Takken T, Van Brussel M, Helders PJ, Gorter JW. Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with cerebral palsy. Disabil Rehabil. 2008;30(18):1358-1366. doi: 10.1080/09638280701639873. PMID: 18850351.
  83. Lieber RL, Fridén J. Muscle contracture and passive mechanics in cerebral palsy. J Appl Physiol (1985). 2019 May 1;126(5):1492-1501. doi: 10.1152/japplphysiol.00278.2018. Epub 2018 Dec 20. PMID: 30571285; PMCID: PMC6589815.
  84. Hoffer MM, Knoebel RT, Roberts R. Contractures in cerebral palsy. Clin Orthop Relat Res. 1987 Jun;(219):70-77. PMID: 3581586.
  85. Gage JR, Novacheck TF. An update on the treatment of gait problems in cerebral palsy. J Pediatr Orthop B. 2001 Oct;10(4):265-274. PMID: 11727367.
  86. Nordark. Transformational technologies in single-event neurological conditions: Applying lessons learned in stroke to cerebral palsy (August 14-15, 2008). Neurorehabil Neural Repair. 2009 Sep;23(7):747-765. doi: 10.1177/1545968309338028. PMID: 19710288.
  87. Burdea GC, Cioi D, Kale A, Janes WE, Ross SA, Engsberg JR. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):165-173. doi: 10.1109/TNSRE.2012.2206055. Epub 2012 Jul 3. PMID: 22773059; PMCID: PMC4228314.
  88. Allen M. The SAGE encyclopedia of communication research methods. Sage Publications. 2017.
  89. Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective control assessment of the lower extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009 Aug;51(8):607-614. doi: 10.1111/j.1469-8749.2008.03186.x. Epub 2009 Feb 12. PMID: 19220390.
  90. Jung S, Song S, Lee D, Lee K, Lee G. Effects of kinect video game training on lower extremity motor function, balance, and gait in adolescents with spastic diplegia cerebral palsy: A pilot randomized controlled trial. Dev Neurorehabil. 2021 Apr;24(3):159-165. doi: 10.1080/17518423.2020.1819458. Epub 2020 Sep 27. PMID: 32981401.
  91. Curtis DJ, Bencke J, Mygind B. The effect of training in an interactive dynamic stander on ankle dorsiflexion and gross motor function in children with cerebral palsy. Dev Neurorehabil. 2014 Dec;17(6):393-397. doi: 10.3109/17518423.2013.844738. Epub 2014 May 27. PMID: 24865964.
  92. Mutlu A, Livanelioglu A, Gunel MK. Reliability of goniometric measurements in children with spastic cerebral palsy. Med Sci Monit. 2007 Jul;13(7):CR323-329. PMID: 17599027.
  93. Berg M, Jahnsen R, Froslie KF, Hussain A. Reliability of the pediatric evaluation of disability inventory (PEDI). Phys Occup Ther Pediatr. 2004;24(3):61-77. doi: 10.1300/j006v24n03_05. PMID: 15257969.
  94. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206-207. doi: 10.1093/ptj/67.2.206. PMID: 3809245.
  95. Cohen J. Statistical power analysis for the behavioural sciences. Academic press. 2013.
  96. Tur BS, Küçükdeveci AA, Kutlay S, Yavuzer G, Elhan AH, Tennant A. Psychometric properties of the WeeFIM in children with cerebral palsy in Turkey. Dev Med Child Neurol. 2009 Sep;51(9):732-738. doi: 10.1111/j.1469-8749.2008.03255.x. Epub 2009 Jan 29. PMID: 19207295.
  97. Pae CU. Why systematic review rather than narrative review? Psychiatry Investig. 2015 Jul;12(3):417-419. doi: 10.4306/pi.2015.12.3.417. Epub 2015 Jul 6. PMID: 26207140; PMCID: PMC4504929.
  98. Drucker AM, Fleming P, Chan AW. Research Techniques Made Simple: Assessing Risk of Bias in Systematic Reviews. J Invest Dermatol. 2016 Nov;136(11):e109-e114. doi: 10.1016/j.jid.2016.08.021. PMID: 27772550.
  99. Georgiev DD, Georgieva I, Gong Z, Nanjappan V, Georgiev GV. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021 Feb 11;11(2):221. doi: 10.3390/brainsci11020221. PMID: 33670277; PMCID: PMC7918687.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search