Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Biological Activities on Geopolymeric and Ordinary Concretes

Environmental Sciences    Start Submission

Buczkowska KE*, Ruzek V, Petr Louda, Bousa M and Yalcinkaya B

Volume3-Issue7
Dates: Received: 2022-06-29 | Accepted: 2022-07-10 | Published: 2022-07-14
Pages: 748-757

Abstract

The primary purpose of the review is to describe the biological growth and its effects on the goepolymeric and ordinary concrete surfaces. As the concrete ages, the surface alkalinity wears off by carbonation and weathering,thus prepares a suitable environment for biological growth. Micro-organisms such as algae, fungi and various types of bacteria start to accumulate on the surface and subsequently penetrate into the micro-cracks of concrete structures, resulting in bursting stresses that can increase the size of cracks and may lead to spalling. Despite the natural resistance of concrete structures against biological growth in the early periods, anti-bacterial additives increase the resistance later.

FullText HTML FullText PDF DOI: 10.37871/jbres1509


Certificate of Publication




Copyright

© 2022 Buczkowska KE, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Buczkowska KE, Ruzek V, Louda P, Bousa M, Yalcinkaya B. Biological Activities on Geopolymeric and Ordinary Concretes. J Biomed Res Environ Sci. 2022 July 14; 3(7): 748-757. doi: 10.37871/jbres1509, Article ID: JBRES1509, Available at: https://www.jelsciences.com/articles/jbres1509.pdf


Subject area(s)

References


  1. Gillar Vaclav. Geopolymers: Production, properties and use. Ostrava. Bachelor thesis. 2013.
  2. Ruzek Vojtech. Effect of flue gas additives and plasma treatment on the surface properties of geopolymers. Liberec. 2020.
  3. The mystery of the durability of Roman concrete. PETR J. 2011.
  4. Dufkova. Special composite materials for construction. Liberec. 2011.
  5. Luukkonen T, Heponiemi A, Runtti H. Application of alkali-activated materials for water and wastewater treatment: a review. Rev Environ Sci Biotechnol. 2019;18:271–297.
  6. Fly Ash Facts for Highway Engineers. Federal highway administration.
  7. Ling T, John VH, Yuan LL, Mark ES, Jerry CC. Solid-state NMR study of geopolymer pre-pared by sol–gel chemistry. Journal of Solid State Chemistry. 2010;183(12):3017-3022.
  8. Quyen VT, Gábor M, Thai D, Van HB, Sandor N. The influence of process conditions on ground coal slag and blast furnace slag based geopolymer properties. Rudarsko-geolosko-naftni zbornik. 2020;35:15-20.
  9. Davidovits PJ. Properties of Geopolymer Cements. Alkaline Cem Concr. 1994;131–149.
  10. Components of cement. 2020.
  11. AWANG, Hanizam, Muhammad AH. Influence of kenaf and polypropylene fibres on mechanical and durability properties of fibre reinforced lightweight foamed concrete. Journal of Engineering Science and Technology. 2015.
  12. Composition of cement. PennState College of Engineering. 2020.
  13. Le Chi. Study of heat resistance of fire barriers using composites based on geopolymers. Liberec. 2015.
  14. Geopolymer Valley. Threads go to the Czech Republic. 2007.
  15. Wei S, Jiang Z, Liu H, Zhou D, Sanchez SM. Microbiologically induced deterioration of concrete: A review. Braz J Microbiol. 2014;44(4):1001-1007.
  16. Allahverdi, Skvára F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1. Mechanism of corrosion at relatively high concentrations. Ceramics. 2005;49:225-229.
  17. Cyrill. Microbial induced acid corrosion in sewer environments. 2017.
  18. Shively, Jessup, Brown, Saunders R. Functional organelles in prokaryotes - polyhedral inclusions (Carboxysomes) of Thiobacillus Neapolitanus. 1973;182:584-586.
  19. Bacteria. 2020.  
  20. Nitrification. In: Wikipedia: The free encyclopedia. San Francisco (CA): Wikimedia Foundation. 2001.
  21. Wasserbauer R, Zadák Z, Novotny J. Nitrifying bacteria on the asbestos-cement roofs of stable buildings. International Biodeterioration. 1988;24(3):153–165.
  22. Hans Christian Gram. San Francisco (CA). Wikimedia Foundation. 2022.
  23. Tripathi N, Sapra A. Gram Staining. Stat Pearls. Treasure Island (FL): Stat Pearls Publishing. 2022.
  24. Algae. In: Wikipedia: the free encyclopedia. San Francisco (CA): Wikimedia Foundation. 2001.
  25. Jayakumar S, Manakula S. Effect of macro algae ulva fasciata on concrete structures. International Journal of Physical Sciences. 2012:7.
  26. Jayakumar, Sriharibabu, Saravanane, Raman. Biodeterioration of coastal concrete structures by Macro algae - Chaetomorpha antennina. Materials Research. 2009;12(4):465-472.
  27. How are fungi different from plants and other organisms? Sodium Media. 2020.
  28. Fungi vs. Plants. Biology dictionary. 2020.
  29. Fomina, Marina P, Olishevska, Snizhana, Pisanska, Hillier, Stephen. Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiology Journal. 2007;24:643-653.
  30. Dong G, Tim F, Neal B, Ralph M. Biodeterioration of concrete by the fungus fusarium. International Biodeterioration & Biodegradation. 1998;41(2):101-109.
  31. What does black mold look like in various surfaces? Clean Water Partners. 2020.
  32. Lisejniky. Educanet ostrava. 2020.
  33. Dirina massiliensis f sorediata. In: Dorset Nature. 2020.
  34. Salvadori, Ornella, Casanova, Annalaura. The role of fungi and lichens in the biodeterioration of stone monuments. The Open Conference Proceedings Journal. 2016;7:39-54.
  35. Qiu, Liangsheng, Dong, Sufen, Ashour, Ashraf, Baoguo. Anti-microbial concrete for smart and durable infrastructures: A review. Construction and Building Materials. 2020;260:120456.
  36. What Are Nanoparticles? Definition, size, uses and properties. Twi Global. 2017.
  37. Ruzek, Vojtech. Antibacterial effect of nanoparticles, positive and negative effects. Dspace TUL. 2020.
  38. Beyth N, Haddad Y, Domb A, Khan W, Hazan R. Alternative anti-microbial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015;2015:246012. doi: 10.1155/2015/246012. Epub 2015 Mar 16. PMID: 25861355; PMCID: PMC4378595.
  39. Armayani M, Pratama, Muhammad, Subaer. The properties of nano silver (Ag)-geopolymer as antibacterial composite for functional surface materials. Matec Web of Conferences. 2017;97:01010.
  40. Tuntachon, Soebpong, Kamwilaisak, Khanita, Somdee, Theerasak, Mongkoltanaruk, Wiyada S, Vanchai, Kornkanok, Ampol, Prinya. Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2. Journal of Building Engineering. 2019;25:100817.
  41. Ambikakumari S, Krishnan U, Yang. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cement and Concrete Composites. 2021;115:103847.
  42. Bibova L, Hana S, Pližingrová E, Jakubíčková M, Sázavská T, Dohnalek P, Lenka, Jirkovský J. Photocatalytic concrete screeds with self-cleaning and antimicrobial function. Open Access Conference Proceedings. 2020;157-162. 10.37904/nanocon.2019.8515.
  43. Sarkar, Manas, Maiti, Moumita, Soumen, Shilang, Qinghua. ZnO-SiO2 nanohybrid decorated sustainable geopolymer retaining anti-biodeterioration activity with improved durability. Materials Science and Engineering. 2018;92.
  44. Berndt, Marita. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Construction and Building Materials. 2011;25:3893-3902.
  45. Kong, Lijuan, Jun Z, Bei. Effectiveness of surface coatings against intensified sewage corrosion of concrete. Journal of Wuhan University of Technology-Mater. 2019;34:1177-1186.
  46. Adak, Dibyendu, Manas, Moumita, Abiral, Saroj, Brajadulal. Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology. RSC Advances. 2015:64037-64045.
  47. Láník Pavel. Geopolymer composite systems and their resistance to mechanical stress. Liberec. 2014.
  48. Topinkova M. Possibilities of modification of hydration processes and alkaline activated binders. Ostrava. 2011.
  49. Gutierrez, Villaquiran, Monica, Ramirez B, Astudillo, Mejia, Ruby. Evaluation of the Antibacterial Activity of a Geopolymer Mortar Based on Metakaolin Supplemented with TiO2 and CuO Particles Using Glass Waste as Fine Aggregate. Coatings. 2020;10:157.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search