Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Effects of Flywheel Resistance Training on Sprinting and Change of Direction Performance in Elite Adolescent Football Players

General Science    Start Submission

Page J, Moody JA*, Esformes JI and Byrne PJ

Dates: Received: 2022-06-12 | Accepted: 2022-06-19 | Published: 2022-06-21
Pages: 694-702


Background: Numerous studies have reported accelerated muscle hypertrophy, strength, and power adaptations following chronic bouts of isoinertial Flywheel Resistance Training (FRT). These factors contribute to Change of Direction (CoD) speed and sprinting performance, which are key determinants of performance in football. Progression through to the senior elite level dictates the necessity to develop these qualities in adolescent populations.

Aim: To determine whether ≥ 4 weeks' FRT enhances CoD and sprinting performance in adolescent football players versus traditional strength training.
Methods: PubMed and SPORT Discus electronic databases were used in February 2021. The search strategy identified randomised controlled trials, randomised crossover trials, and controlled non-randomised, full-text peer-reviewed publications written in English. Study quality was assessed by conducting a modified Downs and Black checklist.

Results: A total of 21 studies were found, and following the removal of duplicates and studies based on title and abstract screening, eight studies remained. Following eligibility screening, three studies were included in the systematic review. A total of 67 subjects participated in the included studies. FRT training provides evidence that sprint performance over distances from 10 to 40-m can be improved (effect sizes: 10m = -1.8 ± 2.4%); 20m (ES = 0.37); 30m (ES = -1.5 ± 1.1%); 40m (ES = -1.1 ± 1.0%); and flying 10m (ES = 0.77) and that FRT induces significant improvements in CoD (different distances and for dominant and non-dominant limbs) compared to a control condition where subjects continued with their football training.

Conclusion: Although the included studies suggest that 10-27 weeks' FRT may improve CoD and sprint performance in adolescent football players, paucity in the available literature makes such a conclusion premature. Further research in the area would ideally account for the device, moment of inertia, and transfer mechanism.

FullText HTML FullText PDF DOI: 10.37871/jbres1499

Certificate of Publication


© 2022 Page J, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Page J, Moody JA, Esformes JI, Byrne PJ. Effects of Flywheel Resistance Training on Sprinting and Change of Direction Performance in Elite Adolescent Football Players. J Biomed Res Environ Sci. 2022 June 21; 3(6): 694-702. doi: 10.37871/jbres1499, Article ID: JBRES1499, Available at:

Subject area(s)


  1. Konefał M, Chmura P, Kowalczuk E, Figueiredo AJ, Sarmento H, Rokita A, Chmura J, Andrzejewski M. Modeling of relationships between physical and technical activities and match outcome in elite German soccer players. J Sports Med Phys Fitness. 2019 May;59(5):752-759. doi: 10.23736/S0022-4707.18.08506-7. Epub 2018 Jun 7. PMID: 29877676.
  2. Longo UG, Sofi F, Candela V, Dinu M, Cimmino M, Massaroni C, Schena E, Denaro V. Performance activities and match outcomes of professional soccer teams during the 2016/2017 series a season. Medicina (Kaunas). 2019 Aug 12;55(8):469. doi: 10.3390/medicina55080469. PMID: 31408996; PMCID: PMC6723654.
  3. Prince C, Morin JB, Mendiguchia J, Lahti J, Guex K, Edouard P, Samozino P. Sprint specificity of isolated hamstring-strengthening exercises in terms of muscle activity and force production. Front Sports Act Living. 2021 Jan 21;2:609636. doi: 10.3389/fspor.2020.609636. PMID: 33554110; PMCID: PMC7859261.
  4. Mendiguchia J, Castaño-Zambudio A, Jiménez-Reyes P, Morin JB, Edouard P, Conceição F, Tawiah-Dodoo J, Colyer SL. Can we modify maximal speed running posture? Implications for performance and hamstring injury management. Int J Sports Physiol Perform. 2022 Mar 1;17(3):374-383. doi: 10.1123/ijspp.2021-0107. Epub 2021 Nov 18. PMID: 34794121.
  5. Spiteri T, Cochrane JL, Hart NH, Haff GG, Nimphius S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur J Sport Sci. 2013;13(6):646-652. doi: 10.1080/17461391.2013.774053. Epub 2013 Feb 28. PMID: 24251742.
  6. Dos'Santos T, Thomas C, Comfort P, Jones PA. The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. Sports Med. 2018 Oct;48(10):2235-2253. doi: 10.1007/s40279-018-0968-3. PMID: 30094799; PMCID: PMC6132493.
  7. Alt T, Komnik I, Severin J, Nodler YT, Benker R, Knicker AJ, Brüggemann GP, Strüder HK. Swing phase mechanics of maximal velocity sprints-does isokinetic lower-limb muscle strength matter? Int J Sports Physiol Perform. 2021 Jul 1;16(7):974-984. doi: 10.1123/ijspp.2020-0423. Epub 2021 Jan 13. PMID: 33440336.
  8. Douglas J, Pearson S, Ross A, McGuigan M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J Sports Sci. 2020 Jan;38(1):29-37. doi: 10.1080/02640414.2019.1678363. Epub 2019 Oct 19. PMID: 31631783.
  9. Dos’Santos T, Thomas C, Comfort P, Jones PA. Role of the penultimate foot contact during change of direction: implications on performance and risk of injury. Strength and Conditioning Journal. 2019;41(1):87-104.
  10. Alt T, Severin J, Komnik I, Nodler YT, Benker R, Knicker AJ, Brüggemann GP, Strüder HK. Nordic Hamstring Exercise training induces improved lower-limb swing phase mechanics and sustained strength preservation in sprinters. Scand J Med Sci Sports. 2021 Apr;31(4):826-838. doi: 10.1111/sms.13909. Epub 2021 Jan 24. PMID: 33341995.
  11. Tesch PA, Dudley GA, Duvoisin MR, Hather BM, Harris RT. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol Scand. 1990 Mar;138(3):263-271. doi: 10.1111/j.1748-1716.1990.tb08846.x. PMID: 2327260.
  12. Hollander DB, Kraemer RR, Kilpatrick MW, Ramadan ZG, Reeves GV, Francois M, Hebert EP, Tryniecki JL. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J Strength Cond Res. 2007 Feb;21(1):34-40. doi: 10.1519/R-18725.1. PMID: 17313264.
  13. Herzog W, Leonard TR, Joumaa V, Mehta A. Mysteries of muscle contraction. J Appl Biomech. 2008 Feb;24(1):1-13. doi: 10.1123/jab.24.1.1. PMID: 18309178.
  14. McHugh MP, Connolly DA, Eston RG, Gleim GW. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999 Mar;27(3):157-170. doi: 10.2165/00007256-199927030-00002. PMID: 10222539.
  15. Nishikawa KC, Lindstedt SL, LaStayo PC. Basic science and clinical use of eccentric contractions: History and uncertainties. J Sport Health Sci. 2018 Jul;7(3):265-274. doi: 10.1016/j.jshs.2018.06.002. Epub 2018 Jun 20. PMID: 30356648; PMCID: PMC6189250.
  16. Herzog W. The role of titin in eccentric muscle contraction. J Exp Biol. 2014 Aug 15;217(Pt 16):2825-2833. doi: 10.1242/jeb.099127. PMID: 25122914.
  17. Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol (1985). 2014 Jun 1;116(11):1407-1417. doi: 10.1152/japplphysiol.00069.2013. Epub 2013 Feb 21. PMID: 23429875.
  18. Schappacher-Tilp G, Leonard T, Desch G, Herzog W. A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One. 2015 Mar 27;10(3):e0117634. doi: 10.1371/journal.pone.0117634. Erratum in: PLoS One. 2015;10(10):e0141188. PMID: 25816319; PMCID: PMC4376863.
  19. Douglas J, Pearson S, Ross A, McGuigan M. Eccentric exercise: Physiological characteristics and acute responses. Sports Med. 2017 Apr;47(4):663-675. doi: 10.1007/s40279-016-0624-8. PMID: 27638040.
  20. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, McLafferty CL Jr, Urban RJ. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001 Mar;280(3):E383-390. doi: 10.1152/ajpendo.2001.280.3.E383. PMID: 11171591.
  21. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737-763. doi: 10.2165/00007256-200737090-00001. PMID: 17722947.
  22. Friedmann-Bette B, Bauer T, Kinscherf R, Vorwald S, Klute K, Bischoff D, Müller H, Weber MA, Metz J, Kauczor HU, Bärtsch P, Billeter R. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur J Appl Physiol. 2010 Mar;108(4):821-836. doi: 10.1007/s00421-009-1292-2. Epub 2009 Nov 25. PMID: 19937450.
  23. Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, Gibala MJ, Van Loon LJ. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013 Feb;45(2):230-237. doi: 10.1249/MSS.0b013e318272cf47. PMID: 22968308.
  24. Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017 May;47(5):917-941. doi: 10.1007/s40279-016-0628-4. PMID: 27647157.
  25. Petré H, Wernstål F, Mattsson CM. Effects of flywheel training on strength-related variables: A meta-analysis. Sports Med Open. 2018 Dec 13;4(1):55. doi: 10.1186/s40798-018-0169-5. PMID: 30547232; PMCID: PMC6292829.
  26. Tannerstedt J, Apró W, Blomstrand E. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol (1985). 2009 Apr;106(4):1412-1418. doi: 10.1152/japplphysiol.91243.2008. Epub 2008 Dec 26. PMID: 19112158.
  27. Gual G, Fort-Vanmeerhaeghe A, Romero-Rodríguez D, Tesch PA. Effects of in-season inertial resistance training with eccentric overload in a sports population at risk for patellar tendinopathy. J Strength Cond Res. 2016 Jul;30(7):1834-1842. doi: 10.1519/JSC.0000000000001286. PMID: 26670989.
  28. Wagle JP, Taber CB, Cunanan AJ, Bingham GE, Carroll KM, DeWeese BH, Sato K, Stone MH. Accentuated eccentric loading for training and performance: A review. Sports Med. 2017 Dec;47(12):2473-2495. doi: 10.1007/s40279-017-0755-6. PMID: 28681170.
  29. Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Haff GG, Stone MH. Implementing eccentric resistance training-part 1: A brief review of existing methods. J Funct Morphol Kinesiol. 2019 Jun 24;4(2):38. doi: 10.3390/jfmk4020038. PMID: 33467353; PMCID: PMC7739257.
  30. Suarez-Arrones L, Núñez FJ, Lara-Lopez P, Di Salvo V, Villanueva A. Inertial flywheel knee- and hip-dominant hamstring strength exercises in professional soccer players: Muscle use and velocity-based (mechanical) eccentric overload. PLoS One. 2020 Oct 2;15(10):e0239977. doi: 10.1371/journal.pone.0239977. PMID: 33007010; PMCID: PMC7531833.
  31. Tous-Fajardo J, Maldonado RA, Quintana JM, Pozzo M, Tesch PA. The flywheel leg-curl machine: Offering eccentric overload for hamstring development. Int J Sports Physiol Perform. 2006 Sep;1(3):293-298. doi: 10.1123/ijspp.1.3.293. PMID: 19116442.
  32. Naczk M, Naczk A, Brzenczek-Owczarzak W, Arlet J, Adach Z. Impact of inertial training on strength and power performance in young active men. J Strength Cond Res. 2016 Aug;30(8):2107-2113. doi: 10.1097/JSC.0000000000000217. PMID: 27457914.
  33. Alkner BA, Bring DK. Muscle activation during gravity-independent resistance exercise compared to common exercises. Aerosp Med Hum Perform. 2019 Jun 1;90(6):506-512. doi: 10.3357/AMHP.5097.2019. Erratum in: Aerosp Med Hum Perform. 2020 Aug 1;91(8):684. PMID: 31101135.
  34. Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol. 2010 Nov;110(5):997-1005. doi: 10.1007/s00421-010-1575-7. Epub 2010 Jul 30. PMID: 20676897.
  35. Norrbrand L, Fluckey JD, Pozzo M, Tesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol. 2008 Feb;102(3):271-281. doi: 10.1007/s00421-007-0583-8. Epub 2007 Oct 10. PMID: 17926060.
  36. Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017 Oct;20(10):943-951. doi: 10.1016/j.jsams.2017.03.004. Epub 2017 Mar 21. PMID: 28385560.
  37. Tesch PA, Fernandez-Gonzalo R, Lundberg TR. Clinical applications of Iso-inertial, eccentric-overload (yoyo™) resistance exercise. Front Physiol. 2017 Apr 27;8:241. doi: 10.3389/fphys.2017.00241. PMID: 28496410; PMCID: PMC5406462.
  38. Lundberg TR, García-Gutiérrez MT, Mandić M, Lilja M, Gonzalo R. Regional and muscle-specific adaptations in knee extensor hypertrophy using flywheel versus conventional weight-stack resistance exercise. Appl Physiol Nutr Metab. 2019 Aug;44(8):827-833. doi: 10.1139/apnm-2018-0774. Epub 2019 Jan 8. PMID: 30620623.
  39. Beato M, Dello Iacono A. Implementing flywheel (isoinertial) exercise in strength training: current evidence, practical recommendations, and future directions. Front Physiol. 2020 Jun 3;11:569. doi: 10.3389/fphys.2020.00569. PMID: 32581845; PMCID: PMC7283738.
  40. Maroto-Izquierdo S, García-López D, de Paz JA. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J Hum Kinet. 2017 Dec 28;60:133-143. doi: 10.1515/hukin-2017-0096. PMID: 29339993; PMCID: PMC5765793.
  41. Maroto-Izquierdo S, Fernandez-Gonzalo R, Magdi HR, Manzano-Rodriguez S, González-Gallego J, De Paz JA. Comparison of the musculoskeletal effects of different iso-inertial resistance training modalities: Flywheel vs. electric-motor. Eur J Sport Sci. 2019 Oct;19(9):1184-1194. doi: 10.1080/17461391.2019.1588920. Epub 2019 Apr 6. PMID: 30957699.
  42. Nuñez Sanchez FJ, Sáez de Villarreal E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res. 2017 Nov;31(11):3177-3186. doi: 10.1519/JSC.0000000000002095. PMID: 29068866.
  43. Sabido R, Hernández-Davó JL, Botella J, Navarro A, Tous-Fajardo J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur J Sport Sci. 2017 Jun;17(5):530-538. doi: 10.1080/17461391.2017.1282046. Epub 2017 Feb 2. PMID: 28152673.
  44. Coratella G, Beato M, Cè E, Scurati R, Milanese C, Schena F, Esposito F. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol Sport. 2019 Sep;36(3):241-248. doi: 10.5114/biolsport.2019.87045. Epub 2019 Jul 31. PMID: 31624418; PMCID: PMC6786325.
  45. Chaouachi A, Manzi V, Chaalali A, Wong del P, Chamari K, Castagna C. Determinants analysis of change-of-direction ability in elite soccer players. J Strength Cond Res. 2012 Oct;26(10):2667-2676. doi: 10.1519/JSC.0b013e318242f97a. PMID: 22124358.
  46. Haugen TA, Tonnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995-2010. Int J Sports Physiol Perform. 2013 Mar;8(2):148-156. doi: 10.1123/ijspp.8.2.148. Epub 2012 Aug 6. PMID: 22868347.
  47. Gissis I, Papadopoulos C, Kalapotharakos VI, Sotiropoulos A, Komsis G, Manolopoulos E. Strength and speed characteristics of elite, subelite, and recreational young soccer players. Res Sports Med. 2006 Jul-Sep;14(3):205-214. doi: 10.1080/15438620600854769. PMID: 16967772.
  48. Pojskic H, Åslin E, Krolo A, Jukic I, Uljevic O, Spasic M, Sekulic D. Importance of reactive agility and change of direction speed in differentiating performance levels in junior soccer players: Reliability and validity of newly developed soccer-specific tests. Front Physiol. 2018 May 15;9:506. doi: 10.3389/fphys.2018.00506. PMID: 29867552; PMCID: PMC5962722.
  49. Trecroci A, Milanović Z, Frontini M, Iaia FM, Alberti G. Physical performance comparison between under 15 elite and sub-elite soccer players. J Hum Kinet. 2018 Mar 23;61:209-216. doi: 10.1515/hukin-2017-0126. PMID: 29599873; PMCID: PMC5873350.
  50. Trajković N, Sporiš G, Krističević T, Madić DM, Bogataj Š. The importance of reactive agility tests in differentiating adolescent soccer players. Int J Environ Res Public Health. 2020 May 28;17(11):3839. doi: 10.3390/ijerph17113839. PMID: 32481696; PMCID: PMC7312495.
  51. de Hoyo M, de la Torre A, Pradas F, Sañudo B, Carrasco L, Mateo-Cortes J, Domínguez-Cobo S, Fernandes O, Gonzalo-Skok O. Effects of eccentric overload bout on change of direction and performance in soccer players. Int J Sports Med. 2015 Apr;36(4):308-314. doi: 10.1055/s-0034-1395521. Epub 2014 Dec 19. PMID: 25525954.
  52. Beato M, Madruga-Parera M, Piqueras-Sanchiz F, Moreno-Pérez V, Romero-Rodriguez D. Acute effect of eccentric overload exercises on change of direction performance and lower-limb muscle contractile function. J Strength Cond Res. 2021 Dec 1;35(12):3327-3333. doi: 10.1519/JSC.0000000000003359. PMID: 31490430.
  53. Sanchez J, Skok O, Carretero M, Pineda A, Ramirez R., Nakamura FY. Effects of concurrent eccentric overload and high-intensity interval training on team sport players' performance. Kinesiology. 2019;51(1):119-126.
  54. de Hoyo M, Sañudo B, Carrasco L, Mateo-Cortes J, Domínguez-Cobo S, Fernandes O, Del Ojo JJ, Gonzalo-Skok O. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J Sports Sci. 2016 Jul;34(14):1380-1387. doi: 10.1080/02640414.2016.1157624. Epub 2016 Mar 10. PMID: 26963941.
  55. Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016 Jan;11(1):66-73. doi: 10.1123/ijspp.2015-0010. Epub 2015 May 1. PMID: 25942419.
  56. Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, Gallego J, de Paz JA. Response to letter to the Editor Re: Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J Sci Med Sport. 2018 Mar;21(3):230-231. doi: 10.1016/j.jsams.2017.09.592. Epub 2017 Oct 6. PMID: 29066055.
  57. Franchi MV, Maffiuletti NA. Distinct modalities of eccentric exercise: different recipes, not the same dish. J Appl Physiol (1985). 2019 Sep 1;127(3):881-883. doi: 10.1152/japplphysiol.00093.2019. Epub 2019 May 9. PMID: 31070957.
  58. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;350:g7647. doi: 10.1136/bmj.g7647. Erratum in: BMJ. 2016 Jul 21;354:i4086. PMID: 25555855.
  59. Altmann S, Ringhof S, Neumann R, Woll A, Rumpf MC. Validity and reliability of speed tests used in soccer: A systematic review. PLoS One. 2019 Aug 14;14(8):e0220982. doi: 10.1371/journal.pone.0220982. PMID: 31412057; PMCID: PMC6693781.
  60. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998 Jun;52(6):377-84. doi: 10.1136/jech.52.6.377. PMID: 9764259; PMCID: PMC1756728.
  61. Hooper P, Jutai JW, Strong G, Russell-Minda E. Age-related macular degeneration and low-vision rehabilitation: a systematic review. Can J Ophthalmol. 2008 Apr;43(2):180-187. doi: 10.3129/i08-001. PMID: 18347620.
  62. Fiorilli G, Mariano I, Iuliano E, Giombini A, Ciccarelli A, Buonsenso A, Calcagno G, di Cagno A. Isoinertial eccentric-overload training in young soccer players: effects on strength, sprint, change of direction, agility and soccer shooting precision. J Sports Sci Med. 2020 Feb 24;19(1):213-223. PMID: 32132845; PMCID: PMC7039027.
  63. Abade E, Silva N, Ferreira R, Baptista J, Gonçalves B, Osório S, Viana J. Effects of adding vertical or horizontal force-vector exercises to in-season general strength training on jumping and sprinting performance of youth football players. J Strength Cond Res. 2021 Oct 1;35(10):2769-2774. doi: 10.1519/JSC.0000000000003221. PMID: 31145387.
  64. de Hoyo M, Pozzo M, Sañudo B, Carrasco L, Skok O, Domínguez-Cobo S, Morán-Camacho E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015 Jan;10(1):46-52. doi: 10.1123/ijspp.2013-0547. Epub 2014 Jun 6. PMID: 24910951.
  65. Suarez-Arrones L, Saez de Villarreal E, Núñez FJ, Di Salvo V, Petri C, Buccolini A, Maldonado RA, Torreno N, Mendez-Villanueva A. In-season eccentric-overload training in elite soccer players: Effects on body composition, strength and sprint performance. PLoS One. 2018 Oct 16;13(10):e0205332. doi: 10.1371/journal.pone.0205332. PMID: 30325935; PMCID: PMC6191107.
  66. Raya-González J, Castillo D, de Keijzer KL, Beato M. The effect of a weekly flywheel resistance training session on elite U-16 soccer players' physical performance during the competitive season. A randomized controlled trial. Res Sports Med. 2021 Nov-Dec;29(6):571-585. doi: 10.1080/15438627.2020.1870978. Epub 2021 Jan 5. PMID: 33401975.
  67. Sabido R, Hernández-Davó JL, Pereyra-Gerber GT. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int J Sports Physiol Perform. 2018 Apr 1;13(4):482-489. doi: 10.1123/ijspp.2017-0282. Epub 2018 May 23. PMID: 28872379.
  68. Buchheit M, Samozino P, Glynn JA, Michael BS, Al Haddad H, Mendez-Villanueva A, Morin JB. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014 Dec;32(20):1906-1913. doi: 10.1080/02640414.2014.965191. Epub 2014 Oct 30. PMID: 25356503.
  69. Morin JB, Slawinski J, Dorel S, de Villareal ES, Couturier A, Samozino P, Brughelli M, Rabita G. Acceleration capability in elite sprinters and ground impulse: Push more, brake less? J Biomech. 2015 Sep 18;48(12):3149-3154. doi: 10.1016/j.jbiomech.2015.07.009. Epub 2015 Jul 17. PMID: 26209876.
  70. Bezodis NE, North JS, Razavet JL. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes. J Sports Sci. 2017 Sep;35(18):1-8. doi: 10.1080/02640414.2016.1239024. Epub 2016 Oct 4. PMID: 27700312.
  71. Jones PA, Thomas C, Dos'Santos T, McMahon JJ, Graham-Smith P. The role of eccentric strength in 180° turns in female soccer players. Sports (Basel). 2017 Jun 17;5(2):42. doi: 10.3390/sports5020042. PMID: 29910402; PMCID: PMC5968983.
  72. Noorkõiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014 Aug;46(8):1525-1537. doi: 10.1249/MSS.0000000000000269. PMID: 24504427.
  73. Rhea MR, Kenn JG, Peterson MD, Massey D, Simao R, Marin PJ, Favero M, Cardozo D, Krein D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Human Movement. 2016;17(1):43-49.
  74. Schache AG, Lai AKM, Brown NAT, Crossley KM, Pandy MG. Lower-limb joint mechanics during maximum acceleration sprinting. J Exp Biol. 2019 Nov 25;222(Pt 22):jeb209460. doi: 10.1242/jeb.209460. PMID: 31672729.
  75. Kawamori N, Nosaka K, Newton RU. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes. J Strength Cond Res. 2013 Mar;27(3):568-573. doi: 10.1519/JSC.0b013e318257805a. PMID: 22531618.
  76. Higashihara A, Nagano Y, Ono T, Fukubayashi T. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J Sports Sci. 2018 Jun;36(12):1313-1318. doi: 10.1080/02640414.2017.1375548. Epub 2017 Sep 5. PMID: 28873030.
  77. Slawinski J, Bonnefoy A, Levêque JM, Ontanon G, Riquet A, Dumas R, Chèze L. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010 Apr;24(4):896-905. doi: 10.1519/JSC.0b013e3181ad3448. PMID: 19935105.
  78. Piqueras-Sanchiz F, Martín-Rodríguez S, Martínez-Aranda LM, Lopes TR, Raya-González J, García-García Ó, Nakamura FY. Effects of moderate vs. high iso-inertial loads on power, velocity, work and hamstring contractile function after flywheel resistance exercise. PLoS One. 2019 Feb 7;14(2):e0211700. doi: 10.1371/journal.pone.0211700. Erratum in: PLoS One. 2019 Apr 12;14(4):e0215567. PMID: 30730959; PMCID: PMC6366769.
  79. Presland JD, Opar DA, Williams MD, Hickey JT, Maniar N, Lee Dow C, Bourne MN, Timmins RG. Hamstring strength and architectural adaptations following inertial flywheel resistance training. J Sci Med Sport. 2020 Nov;23(11):1093-1099. doi: 10.1016/j.jsams.2020.04.007. Epub 2020 May 19. PMID: 32461050.
  80. Clark KP, Rieger RH, Bruno RF, Stearne DJ. The National Football League Combine 40-yd Dash: How important IS maximum velocity? J Strength Cond Res. 2019 Jun;33(6):1542-1550. doi: 10.1519/JSC.0000000000002081. PMID: 28658072.
  81. Douglas J, Pearson S, Ross A, McGuigan M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J Sports Sci. 2020 Jan;38(1):29-37. doi: 10.1080/02640414.2019.1678363. Epub 2019 Oct 19. PMID: 31631783.
  82. Fukutani A, Misaki J, Isaka T. Both the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle. R Soc Open Sci. 2017 Feb 15;4(2):161036. doi: 10.1098/rsos.161036. PMID: 28386453; PMCID: PMC5367297.
  83. Pichardo AW, Oliver JL, Harrison CB, Maulder PS, Lloyd RS. Integrating models of long-term athletic development to maximise the physical development of youth. International Journal of Sports Science and Coaching. 2018;13(6).


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search