Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9506576555

Pathophysiology, Treatment and Long-Term Consequences of Heart Failure in Infancy

Medicine Group    Start Submission

Reiner Buchhorn*

Volume3-Issue4
Dates: Received: 2022-04-27 | Accepted: 2022-04-29 | Published: 2022-04-30
Pages: 436-445

Abstract

Introduction: Infants have the highest risk to die from heart failure. However, innovations like beta-blocker treatment introduced more than 50 years ago are not recorded in the guidelines if the clinical trials are missing or be ignored, like propranolol in infants with severe heart failure to congenital heart disease.

Methods: We re-analyse our data with propranolol and the ACE-inhibitor captopril in infants with severe heart failure due to congenital heart disease as published 20 years ago and the current long-term follow up data.

Results: Propranolol but not Captopril significantly reduces clinical heart failure and neurohormonal activation of the renin angiotensin aldosterone system. Propranolol significantly improve dysautonomia measured by heart rate variability. In contrast to grown up with congenital heart disease – preoperatively treated with digoxin and diuretics - our patients up to the age of 15 years – preoperatively treated with propranolol without frusemide – have normal myocardial function and heart rate variability.

Discussion: The evidence-based data of propranolol to treat severe heart failure in infants with congenital heart disease are the best we have. There is no reason to withheld infants from this effective therapy of early life stress due to heart failure.

Conclusion: Further studies are needed to proof the impact of propranolol in infants with severe heart failure on long-term neurodevelopment, endothelial- and myocardial function.

FullText HTML FullText PDF DOI: 10.37871/jbres1462


Certificate of Publication




Copyright

© 2022 Buchhorn R. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Buchhorn R. Pathophysiology, Treatment and Long-Term Consequences of Heart Failure in Infancy. J Biomed Res Environ Sci. 2022 Apr 30; 3(4): 436-444. doi: 10.37871/jbres1462, Article ID: JBRES1462, Available at: https://www.jelsciences.com/articles/jbres1462.pdf


Subject area(s)

References


  1. Gilljam T, Mandalenakis Z, Dellborg M. Development of heart failure in young patients with congenital heart disease: a nation-wide cohort study. Open heart. 2019;6(1):e000858. doi: 10.1136/openhrt-2018-000858
  2. Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L, Ross RD, Pahl E, Blume ED, Dodd DA, Rosenthal DN, Burr J, LaSalle B, Holubkov R, Lukas MA, Tani LY. Pediatric Carvedilol Study Group. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007 Sep 12;298(10):1171-1179. doi: 10.1001/jama.298.10.1171. PMID: 17848651.
  3. Buchhorn R, Hulpke-Wette M, Hilgers R, Bartmus D, Wessel A, Bürsch J. Propranolol treatment of congestive heart failure in infants with congenital heart disease: The CHF-PRO-INFANT trial. Congestive heart failure in infants treated with propanol. Int J Cardiol. 2001 Jul;79(2-3):167-173. doi: 10.1016/s0167-5273(01)00413-2. PMID: 11461738.
  4. Ramakrishnan S, Ghati N, Ahuja RS. Efficacy and safety of propranolol in infants with heart failure due to moderate-to-large ventricular septal defect (VSD-PHF study) - A prospective randomized trial. Annals of pediatric cardiology. 2021;14(3):331-340. doi: 10.4103/apc.APC_94_21
  5. Buchhorn R, Bartmus D, Siekmeyer W, Hulpke-Wette M, Schulz R, Bürsch J. Beta-blocker therapy of severe congestive heart failure in infants with left to right shunts. Am J Cardiol. 1998 Jun 1;81(11):1366-1368. doi: 10.1016/s0002-9149(98)00175-1. PMID: 9631979.
  6. Buchhorn R, Ross RD, Hulpke-Wette M, Bartmus D, Wessel A, Schulz R, Bürsch J. Effectiveness of low dose captopril versus propranolol therapy in infants with severe congestive failure due to left-to-right shunts. Int J Cardiol. 2000 Nov-Dec;76(2-3):227-233. doi: 10.1016/s0167-5273(00)00384-3. PMID: 11104878.
  7. Hsu DT, Zak V, Mahony L, Sleeper LA, Atz AM, Levine JC, Barker PC, Ravishankar C, McCrindle BW, Williams RV, Altmann K, Ghanayem NS, Margossian R, Chung WK, Border WL, Pearson GD, Stylianou MP, Mital S. Pediatric Heart Network Investigators. Enalapril in infants with single ventricle: Results of a multicenter randomized trial. Circulation. 2010 Jul 27;122(4):333-340. doi: 10.1161/CIRCULATIONAHA.109.927988. Epub 2010 Jul 12. PMID: 20625111; PMCID: PMC3692364.
  8. Buchhorn R, Ross RD, Bartmus D, Wessel A, Hulpke-Wette M, Bürsch J. Activity of the renin-angiotensin-aldosterone and sympathetic nervous system and their relation to hemodynamic and clinical abnormalities in infants with left-to-right shunts. Int J Cardiol. 2001 May;78(3):225-230; discussion 230-231. doi: 10.1016/s0167-5273(01)00398-9. PMID: 11376824.
  9. Ross RD, Daniels SR, Schwartz DC, Hannon DW, Shukla R, Kaplan S. Plasma norepinephrine levels in infants and children with congestive heart failure. Am J Cardiol. 1987 Apr 1;59(8):911-914. doi: 10.1016/0002-9149(87)91118-0. PMID: 3825955.
  10. Buchhorn R, Hammersen A, Bartmus D, Bürsch J. The pathogenesis of heart failure in infants with congenital heart disease. Cardiol Young. 2001 Sep;11(5):498-504. doi: 10.1017/s1047951101000725. PMID: 11727904.
  11. Buchhorn R, Hulpke-Wette M, Nothroff J, Paul T. Heart rate variability in infants with heart failure due to congenital heart disease: reversal of depressed heart rate variability by propranolol. Med Sci Monit. 2002 Oct;8(10):CR661-6. PMID: 12388917.
  12. Spector LG, Menk JS, Knight JH, et al. Trends in Long-Term Mortality After Congenital Heart Surgery. Journal of the American College of Cardiology. 2018;71(21):2434-46. doi: 10.1016/j.jacc.2018.03.491
  13. Buchhorn R, Meint S, Willaschek C. The Impact of Early Life Stress on Growth and Cardiovascular Risk: A Possible Example for Autonomic Imprinting? PloS one. 2016;11(11):e0166447. doi: 10.1371/journal.pone.0166447
  14. Buchhorn R. Myocardial Protection with Beta Blocker Treatment in Infants with Heart Failure Due to Congenital Heart Defects and Duchenne Muscular Dystrophy. Open Journal of Thoracic Surgery. 2020;10(4). https://tinyurl.com/4j7ma5wh
  15. Buchhorn R, Hulpke-Wette M, Ruschewski W, Ross RD, Fielitz J, Pregla R, Hetzer R, Regitz-Zagrosek V. Effects of therapeutic beta blockade on myocardial function and cardiac remodelling in congenital cardiac disease. Cardiol Young. 2003 Feb;13(1):36-43. doi: 10.1017/s1047951103000076. PMID: 12691286.
  16. Liu H, Zhang CH, Ammanamanchi N. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Science translational medicine. 2019;11(513). doi: 10.1126/scitranslmed.aaw6419
  17. El Khoudary SR, Fabio A, Yester JW. Design and rationale of a clinical trial to increase cardiomyocyte division in infants with tetralogy of Fallot. International journal of cardiology. 2021;339:36-42. doi: 10.1016/j.ijcard.2021.07.020
  18. Buchhorn R, Wessel A, Hulpke-Wette M. Endogenous nitric oxide and soluble tumor necrosis factor receptor levels are enhanced in infants with congenital heart disease. Crit Care Med. 2001;29(11):2208-2210. doi: 10.1097/00003246-200111000-00026
  19. Buchhorn R, Hulpke-Wette M, Wessel A. Beta-blocker therapy in an infant with pulmonary hypertension. Eur J Pediatr. 1999;158(12):1007-1008. https://tinyurl.com/ys5cb9zr
  20. Farha S, Saygin D, Park MM. Pulmonary arterial hypertension treatment with carvedilol for heart failure: a randomized controlled trial. JCI insight. 2017;2(16). doi: 10.1172/jci.insight.95240
  21. Evans DJ, MacGregor RJ, Dean HG. Neonatal catecholamine levels and neurodevelopmental outcome: a cohort study. Archives of disease in childhood Fetal and neonatal edition. 2001;84(1):F49-52. doi: 10.1136/fn.84.1.f49
  22. Longin E, Schaible T, Lenz T, König S. Short term heart rate variability in healthy neonates: normative data and physiological observations. Early Hum Dev. 2005 Aug;81(8):663-671. doi: 10.1016/j.earlhumdev.2005.03.015. PMID: 16046085.
  23. Gruber EM, Laussen PC, Casta A, Zimmerman AA, Zurakowski D, Reid R, Odegard KC, Chakravorti S, Davis PJ, McGowan FX Jr, Hickey PR, Hansen DD. Stress response in infants undergoing cardiac surgery: A randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesth Analg. 2001 Apr;92(4):882-890. doi: 10.1097/00000539-200104000-00016. PMID: 11273919.
  24. Jafri SK, Ehsan L, Abbas Q. Frequency and Outcome of Acute Neurologic Complications after Congenital Heart Disease Surgery. Journal of pediatric neurosciences. 2017;12(4):328-331. doi: 10.4103/jpn.JPN_87_17
  25. Tsao PC, Lee YS, Jeng MJ. Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: A nationwide population-based longitudinal study. European child & adolescent psychiatry. 2017;26(11):1351-1359. doi: 10.1007/s00787-017-0989-8
  26. Meuwly E, Feldmann M, Knirsch W. Postoperative brain volumes are associated with one-year neurodevelopmental outcome in children with severe congenital heart disease. Scientific reports. 2019;9(1):10885. doi: 10.1038/s41598-019-47328-9
  27. Koenig J, Abler B, Agartz. Cortical thickness and resting-state cardiac function across the lifespan: A cross-sectional pooled mega-analysis. Psychophysiology. 2021;58(7):e13688. doi: 10.1111/psyp.13688
  28. Menon SC, Al-Dulaimi R, McCrindle BW. Delayed puberty and abnormal anthropometry and its associations with quality of life in young Fontan survivors: A multicenter cross-sectional study. Congenital heart disease. 2018;13(3):463-469. doi: 10.1111/chd.12597
  29. Buchhorn R. Short stature in severe pediatric heart failure: The deleterious role of growth hormone replacement. Biomed Res. 2019;4:1-3.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search