Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9451151755

CNS Demyelination Diseases Following Exposure to Urban Air Pollution

Medicine Group    Start Submission

Mojtaba Ehsanifar* and Zeinab Montazeri

Volume3-Issue2
Dates: Received: 2022-02-02 | Accepted: 2022-02-25 | Published: 2022-02-26
Pages: 205-209

Abstract

Epidemiology findings show that exposure to urban air pollutants as a source of oxidative stress and neuroinflammation is associated with the Central Nervous System (CNS) demyelinating diseases, such as Multiple Sclerosis (MS). An autoimmune response involving increased inflammation and demyelination in the CNS leads to the pathophysiology of MS, which is more common in adult young females. Particulate Matter (PM), including fine particles (PM <2.5μm, PM 2.5) and very fine particles (PM <0.1μm, PM 0.1), transition metals, and ozone are of potent or oxidant capable of producing Reactive Oxygen Species (ROS). Redox-sensitive pathways can be caused by oxidative stress, leading to various biological processes, including inflammation and other harmful outcomes in the brain. Exposure to Diesel Exhaust Particles (DEPs) mediates significant alterations in myelination across various regions in the brain. There is also an increase in ROS production in the CNS of DEPs exposed mice. Thus, targeting neuroinflammation and oxidative stress can be a useful strategy to eliminate the obvious symptoms of the CNS demyelinating diseases. Overall, in the current mini-review, we examined the exposure to air pollutants nanoparticles associated with the CNS demyelinating diseases, such as MS.

FullText HTML FullText PDF DOI: 10.37871/jbres1423


Certificate of Publication




Copyright

© 2022 Ehsanifar M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ehsanifar M, Montazeri Z. CNS Demyelination Diseases Following Exposure to Urban Air Pollution. J Biomed Res Environ Sci. 2022 Feb 26; 3(2): 205-209. doi: 10.37871/jbres1423, Article ID: JBRES1423, Available at: https://www.jelsciences.com/articles/jbres1423.pdf


Subject area(s)

References


  1. Organization WHO. WHO global ambient air quality database (update 2018). World Health Organization: Geneva, Switzerland. 2018. https://tinyurl.com/2p86kb63
  2. Ehsanifar M, Jafari AJ, Montazeri Z, Kalantari RR, Gholami M, Ashtarinezhad A. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. J Environ Health Sci Eng. 2021 Jan 22;19(1):261-272. doi: 10.1007/s40201-020-00600-x. PMID: 34150234; PMCID: PMC8172730.
  3. Ehsanifar M, Banihashemian, Farokhmanesh. Exposure to ambient ultra-fine particles and stroke. J Biomed Res Environ Sci. 2021;2(10):954-995 https://tinyurl.com/mwhm6ynx
  4. Ehsanifar M, Montazeri, Rafati. Alzheimer’s disease-like neuropathology following exposure to ambient noise. J Biomed Res Environ Sci. 2021;2(11):1159-1162. https://tinyurl.com/ms43fjz3
  5. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007 Jan;8(1):57-69. doi: 10.1038/nrn2038. PMID: 17180163.
  6. Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, Jafari AJ. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. Ecotoxicol Environ Saf. 2019 Jan 30;168:338-347. doi: 10.1016/j.ecoenv.2018.10.090. Epub 2018 Nov 2. PMID: 30391838.
  7. Ehsanifar M, Montazeri Z, Taheri MA, Rafati M, Behjati M, Karimian M. Hippocampal inflammation and oxidative stress following exposure to diesel exhaust nanoparticles in male and female mice. Neurochem Int. 2021 May;145:104989. doi: 10.1016/j.neuint.2021.104989. Epub 2021 Feb 12. PMID: 33582162.
  8. Haghani A. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environment International. 2020;136:105510. https://tinyurl.com/5458r85r
  9. Ehsanifar M. Airborne aerosols particles and COVID-19 transition. Environ Res. 2021 Sep;200:111752. doi: 10.1016/j.envres.2021.111752. Epub 2021 Jul 22. PMID: 34302822; PMCID: PMC8295061.
  10. Forman HJ, Finch CE. A critical review of assays for hazardous components of air pollution. Free Radic Biol Med. 2018 Mar;117:202-217. doi: 10.1016/j.freeradbiomed.2018.01.030. Epub 2018 Jan 31. PMID: 29407794; PMCID: PMC5845809.
  11. Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. Environ Res. 2019 Sep;176:108574. doi: 10.1016/j.envres.2019.108574. Epub 2019 Jul 5. PMID: 31299618.
  12. Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, Jackson BP, Oberdorster G. The impact of inhaled ambient ultrafine particulate matter on developing brain: Potential importance of elemental contaminants. Toxicol Pathol. 2019 Dec;47(8):976-992. doi: 10.1177/0192623319878400. Epub 2019 Oct 14. PMID: 31610749; PMCID: PMC6911038.
  13. Cory-Slechta DA, Allen JL, Conrad K, Marvin E, Sobolewski M. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology. 2018 Dec;69:217-231. doi: 10.1016/j.neuro.2017.12.003. Epub 2017 Dec 13. PMID: 29247674; PMCID: PMC5999548.
  14. Jonidi Jafari A, Ehsanifar. The share of different vehicles in air pollutant emission in tehran, using 2013 traffic information. Caspian Journal of Health Research. 2016;2(2):28-36. https://tinyurl.com/mrxkseu3
  15. Reis H, Reis C, Sharip A, Reis W, Zhao Y, Sinclair R, Beeson L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. Environ Int. 2018 May;114:252-265. doi: 10.1016/j.envint.2018.02.042. Epub 2018 Mar 7. PMID: 29524921.
  16. Russ TC, Reis S, van Tongeren M. Air pollution and brain health: defining the research agenda. Curr Opin Psychiatry. 2019 Mar;32(2):97-104. doi: 10.1097/YCO.0000000000000480. PMID: 30543549.
  17. Ehsanifar M, Montazeri, Rafat. Neurotoxicity related exposure to ambient nanoparticles. 2022. https://tinyurl.com/bdeb3jk7
  18. Ehsanifar M. Anxiety and depression following diesel exhaust Nano-particles exposure in male and female mice. J Neurophysiol Neurol Disord. 2020;8:1-8. https://tinyurl.com/524f4z66
  19. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009 Sep;32(9):506-516. doi: 10.1016/j.tins.2009.05.009. Epub 2009 Aug 26. PMID: 19716187; PMCID: PMC2743793.
  20. Ehsanifar M. Exposure To urban air pollution nanoparticles and CNS disease. On J Neur Br Disord. 2021;5(5):520-526. https://tinyurl.com/ymd6z3jb
  21. Ehsanifar M, Banihashemian, Ehsanifar. Exposure to Air Pollution Nanoparticles: Oxidative Stress and Neuroinfl ammation. J Biomed Res Environ Sci. 2021;2(10):964-976. https://tinyurl.com/4eev4cxk
  22. Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Exposure to traffic-generated air pollution promotes alterations in the integrity of the brain microvasculature and inflammation in female ApoE-/- mice. Toxicol Lett. 2021 Mar 15;339:39-50. doi: 10.1016/j.toxlet.2020.12.016. Epub 2020 Dec 26. PMID: 33373663; PMCID: PMC7864563.
  23. Ehsanifar M, Jafari AJ, Nikzad H, Zavareh MS, Atlasi MA, Mohammadi H, Tameh AA. Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol Environ Saf. 2019 Jul 30;176:34-41. doi: 10.1016/j.ecoenv.2019.03.090. Epub 2019 Mar 25. PMID: 30921694.
  24. Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, Lund AK. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Part Fibre Toxicol. 2013 Dec 17;10:62. doi: 10.1186/1743-8977-10-62. PMID: 24344990; PMCID: PMC3878624.
  25. Lucero J, Suwannasual U, Herbert LM, McDonald JD, Lund AK. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Inhal Toxicol. 2017 May;29(6):266-281. doi: 10.1080/08958378.2017.1357774. Epub 2017 Aug 17. PMID: 28816559; PMCID: PMC6732220.
  26. Chitnis T. The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int Rev Neurobiol. 2007;79:43-72. doi: 10.1016/S0074-7742(07)79003-7. PMID: 17531837; PMCID: PMC7112308.
  27. Patel J, Balabanov R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci. 2012;13(8):10647-10659. doi: 10.3390/ijms130810647. Epub 2012 Aug 23. PMID: 22949885; PMCID: PMC3431883.
  28. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol. 2010 May 17;7:12. doi: 10.1186/1743-8977-7-12. PMID: 20478040; PMCID: PMC2883965.
  29. Bai L, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Brook JR, Tu K, Copes R, Goldberg MS, Martin RV, Murray BJ, Kopp A, Chen H. Long-term exposure to air pollution and the incidence of multiple sclerosis: A population-based cohort study. Environ Res. 2018 Oct;166:437-443. doi: 10.1016/j.envres.2018.06.003. Epub 2018 Jun 22. PMID: 29940476.
  30. Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2007 Mar;184(1-2):37-44. doi: 10.1016/j.jneuroim.2006.11.015. Epub 2006 Dec 28. PMID: 17196667; PMCID: PMC1933528.
  31. Mumaw CL, Levesque S, McGraw C, Robertson S, Lucas S, Stafflinger JE, Campen MJ, Hall P, Norenberg JP, Anderson T, Lund AK, McDonald JD, Ottens AK, Block ML. Microglial priming through the lung-brain axis: The role of air pollution-induced circulating factors. FASEB J. 2016 May;30(5):1880-1891. doi: 10.1096/fj.201500047. Epub 2016 Feb 10. PMID: 26864854; PMCID: PMC4836369.
  32. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015 Apr;294(2):63-69. doi: 10.1016/j.cellimm.2015.01.018. Epub 2015 Feb 7. PMID: 25682174; PMCID: PMC4380804.
  33. Hacohen Y, Banwell B. Treatment approaches for MOG-Ab-associated demyelination in children. Curr Treat Options Neurol. 2019 Jan 22;21(1):2. doi: 10.1007/s11940-019-0541-x. PMID: 30671648; PMCID: PMC6342853.
  34. Noonan CW, Kathman SJ, White MC. Prevalence estimates for MS in the United States and evidence of an increasing trend for women. Neurology. 2002 Jan 8;58(1):136-138. doi: 10.1212/wnl.58.1.136. PMID: 11781421.
  35. Ascherio A, Munger KL, Lünemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol. 2012 Nov 5;8(11):602-612. doi: 10.1038/nrneurol.2012.198. Epub 2012 Oct 9. PMID: 23045241; PMCID: PMC4467212.
  36. Harbo HF, Gold R, Tintoré M. Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord. 2013 Jul;6(4):237-248. doi: 10.1177/1756285613488434. PMID: 23858327; PMCID: PMC3707353.
  37. Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol. 2016 Jun;160:43-52. doi: 10.1016/j.jsbmb.2016.01.006. Epub 2016 Jan 14. PMID: 26776441; PMCID: PMC5233753.
  38. Maglione A, Rolla S, Mercanti SF, Cutrupi S, Clerico M. The adaptive immune system in multiple sclerosis: an estrogen-mediated point of view. Cells. 2019 Oct 19;8(10):1280. doi: 10.3390/cells8101280. PMID: 31635066; PMCID: PMC6829884.
  39. Soldan SS, Alvarez Retuerto AI, Sicotte NL, Voskuhl RR. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003 Dec 1;171(11):6267-6274. doi: 10.4049/jimmunol.171.11.6267. PMID: 14634144.
  40. Suwannasual U, Lucero J, McDonald JD, Lund AK. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet. Environ Res. 2018 Jan;160:449-461. doi: 10.1016/j.envres.2017.10.029. Epub 2017 Nov 5. PMID: 29073573; PMCID: PMC5705467.
  41. Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010 Dec 15;2011:164608. doi: 10.4061/2011/164608. PMID: 21197107; PMCID: PMC3010615.
  42. van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol. 1998 Dec 1;92(1-2):67-75. doi: 10.1016/s0165-5728(98)00175-1. PMID: 9916881.
  43. Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011 Dec 1;585(23):3715-23. doi: 10.1016/j.febslet.2011.08.004. Epub 2011 Aug 16. PMID: 21854776.
  44. Jackman N, Ishii A, Bansal R. Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology (Bethesda). 2009 Oct;24:290-297. doi: 10.1152/physiol.00016.2009. PMID: 19815855; PMCID: PMC2854184.
  45. Narayan R, Simpson A, Fritsche K, Salama S, Pardo S, Mealy M, Paul F, Levy M. MOG antibody disease: A review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2018 Oct;25:66-72. doi: 10.1016/j.msard.2018.07.025. Epub 2018 Jul 24. PMID: 30048919.
  46. Wynford-Thomas R, Jacob A, Tomassini V. Neurological update: MOG antibody disease. J Neurol. 2019 May;266(5):1280-1286. doi: 10.1007/s00415-018-9122-2. Epub 2018 Dec 19. PMID: 30569382; PMCID: PMC6469662.
  47. Spadaro M, Gerdes LA, Krumbholz M, Ertl-Wagner B, Thaler FS, Schuh E, Metz I, Blaschek A, Dick A, Brück W, Hohlfeld R, Meinl E, Kümpfel T. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016 Jun 30;3(5):e257. doi: 10.1212/NXI.0000000000000257. PMID: 27458601; PMCID: PMC4949775.
  48. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED. Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. 2013;2013:708659. doi: 10.1155/2013/708659. Epub 2013 Sep 24. PMID: 24174971; PMCID: PMC3794553.
  49. Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathol. 1999 Jan;9(1):69-92. doi: 10.1111/j.1750-3639.1999.tb00212.x. PMID: 9989453; PMCID: PMC7161906.
  50. Rashida Gnanaprakasam JN, Wu R, Wang R. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Front Immunol. 2018 May 16;9:1075. doi: 10.3389/fimmu.2018.01075. PMID: 29868027; PMCID: PMC5964129.
  51. Denic A, Wootla B, Rodriguez M. CD8 (+) T cells in multiple sclerosis. Expert Opin Ther Targets. 2013 Sep;17(9):1053-1066. doi: 10.1517/14728222.2013.815726. Epub 2013 Jul 6. PMID: 23829711; PMCID: PMC3928018.
  52. Brück W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol. 2005 Nov;252 Suppl 5:v3-9. doi: 10.1007/s00415-005-5002-7. PMID: 16254699.
  53. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014 Nov;45(8):687-697. doi: 10.1016/j.arcmed.2014.11.013. Epub 2014 Nov 26. PMID: 25431839.
  54. Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front Immunol. 2016 Sep 27;7:382. doi: 10.3389/fimmu.2016.00382. PMID: 27729910; PMCID: PMC5037862.
  55. Panchanathan R, Shen H, Zhang X, Ho SM, Choubey D. Mutually positive regulatory feedback loop between interferons and estrogen receptor-alpha in mice: implications for sex bias in autoimmunity. PLoS One. 2010 May 28;5(5):e10868. doi: 10.1371/journal.pone.0010868. PMID: 20526365; PMCID: PMC2878324.
  56. Subramanian S, Matejuk A, Zamora A, Vandenbark AA, Offner H. Oral feeding with ethinyl estradiol suppresses and treats experimental autoimmune encephalomyelitis in SJL mice and inhibits the recruitment of inflammatory cells into the central nervous system. J Immunol. 2003 Feb 1;170(3):1548-1555. doi: 10.4049/jimmunol.170.3.1548. PMID: 12538720.
  57. Fucic A. Environmental exposure to xenoestrogens and oestrogen related cancers: reproductive system, breast, lung, kidney, pancreas, and brain. Environmental Health. 2012;11(1):1-9. https://tinyurl.com/zsrxs4yj
  58. Carpenter DO, Arcaro K, Spink DC. Understanding the human health effects of chemical mixtures. Environ Health Perspect. 2002 Feb;110 Suppl 1(Suppl 1):25-42. doi: 10.1289/ehp.02110s125. PMID: 11834461; PMCID: PMC1241145.
  59. Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev. 2012 May;11(6-7):A502-514. doi: 10.1016/j.autrev.2011.12.003. Epub 2011 Dec 13. PMID: 22193289; PMCID: PMC3431799.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search