Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9451144326

Lichens Uses Surprising Uses of Lichens that Improve Human Life

Biology Group    Start Submission

Waill A Elkhateeb*, Dina E El-Ghwas and Ghoson M Daba

Volume3-Issue2
Dates: Received: 2022-02-14 | Accepted: 2022-02-17 | Published: 2022-02-24
Pages: 189-194

Abstract

Lichens are rich in nutrients and in biologically active compounds that belong to different chemical classes. The abilities of different members of Lichens have encouraged researchers to investigate further applications of these Lichens in fields other than the food acnd pharmaceutical industries. In this review, some of the unusual current and potential applications of Lichens are described.

FullText HTML FullText PDF DOI: 10.37871/jbres1420


Certificate of Publication




Copyright

© 2022 Elkhateeb WA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Elkhateeb WA, El-Ghwas DE, Daba GM. Lichens Uses: Surprising Uses of Lichens that Improve Human Life. J Biomed Res Environ Sci. 2022 Feb 24; 3(2): 189-194. doi: 10.37871/jbres1420, Article ID: JBRES1420, Available at: https://www.jelsciences.com/articles/jbres1420.pdf


Subject area(s)

References


  1. Zambare VP, Christopher LP. Biopharmaceutical potential of lichens. Pharm Biol. 2012 Jun;50(6):778-98. doi: 10.3109/13880209.2011.633089. Epub 2012 Apr 3. PMID: 22471936.
  2. Yang MX, Devkota S, Wang LS, Scheidegger C. Ethnolichenology-The use of lichens in the Himalayas and southwestern parts of china. Diversity. 2021;13(7):330.doi: 10.3390/d13070330.
  3. Nylander W. Les lichens du Jardin du Luxembourg. Bulletin de La Société Botanique de France. 1866;13:364-372. doi: 10.1080/00378941.1866.10827433.
  4. Ferry BW, Baddeley MS, Hawksworth DL. Air Pollution and Lichens. The Athlone Press, London. 1973;389. doi: 10.1017/S0376892900000898.
  5. Nimis PL, Ciccarelli A, Lazzarin G, Barbagli R, Benedet A, Castello M, Gasparo D, Lausi D, Olivieri S, Tretiach M. I licheni come bioindicatori di inquinamento atmosferico nell’area di Schio-Thiene-Breganze (VI), in: Bolletino del Museo Civico di Storia Naturale di Verona, 16. CO.GE.V. s.r.l., Verona, Ecothema s.r.l., Trieste. 1989. https://tinyurl.com/4es27wye
  6. Ronen R, Canaani O, Garhy J, Cahen D, Malkin S, Galun M. The effect of air pollution and bisulphite treatment in the lichen Ramalina duriaei studied by photoacoustics, in: Advances in Photosynthesis Research, Proceedings of the 6th Congress on Photosynthesis. Brussels. 1983;1984:1-6.
  7. Kardish N, Ronen R, Bubrick P, Garty J. The Influence of Air Pollution on the concentration of ATP and on chlorophyll degradation in the Lichen, Ramalina Duriaei (DE NOT.) BAGL. New Phytol. 1987 Aug;106(4):697-706. doi: 10.1111/j.1469-8137.1987.tb00170.x. PMID: 33874088.
  8. Conti ME. Il monitoraggio biologico della qualità ambientale. SEAM, Roma. 2002;180. https://tinyurl.com/2p8c6823
  9. Fields RD, St. Clair LL. The effects of SO2 on photosynthesis and carbohydrate transfer in the two lichens: Colema polycarpon and Parmelia chlorochroa. American Journal of Botany. 1984;71:986-998. https://tinyurl.com/4k469vf2
  10. Conti ME, Cecchetti G. Biological monitoring: Lichens as bioindicators of air pollution assessment-a review. Environ Pollut. 2001;114(3):471-92. doi: 10.1016/s0269-7491(00)00224-4. PMID: 11584645.
  11. Knops JM, Nash TH. III, Boucher VL, Schlesinger WL. Mineral cycling and epiphytic lichens: Implications at the ecosystem level. Lichenologist. 1991;23:309-321. doi: 10.1017/S0024282991000452.
  12. Nash TH III, Gries C. The use of lichens in atmospheric deposition studies with an emphasis on the Arctic. Science of the Total Environment. 1995;160:729-736. https://tinyurl.com/5tbrdzcr
  13. Bajpai R, Mishra GK, Mohabe S, Upreti DK, Nayaka S. Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities, India. J Environ Biol. 2011 Mar;32(2):195-9. PMID: 21882655.
  14. Richardson DHS. Metal uptake in lichens. Symbiosis. 1995;18:119-127. https://tinyurl.com/2p93ydnr
  15. Sheppard PR, Speakman RJ, Ridenour G, Witten ML. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada. Environ Monit Assess. 2007 Jul;130(1-3):511-8. doi: 10.1007/s10661-006-9440-1. Epub 2006 Nov 28. PMID: 17131081.
  16. Srivastava K, Bhattacharya P, Rai H, Nag P, Gupta RK. Epiphytic lichen Ramalina as indicator of atmospheric metal deposition, along land use gradients in and around binsar Wildlife Sanctuary, Kumaun, Western Himalaya, National Conference on Cryptogam research in India: Progress and Prospects. 2015. doi: 10.13140/RG.2.1.4773.9601.
  17. Jeran Z, Jaćimović R, Batic F, Mavsar R. Lichens as integrating air pollution monitors. Environ Pollut. 2002;120(1):107-13. doi: 10.1016/s0269-7491(02)00133-1. PMID: 12199456
  18. Shukla V, Upreti DK, Bajpai R. Lichens to biomonitors the environment. Netherlands, Springer. 2013. https://tinyurl.com/3pcszpnh
  19. Savillo IT. Pyxine cocoes Nyl. A foliose lichen as a potential bioindicator/biomoinitor of air pollution in Philippines: An Update. Enviro News. 2010;16(1):8. https://tinyurl.com/y8u2chsd
  20. Bajpai R, Upreti DK, Mishra SK. Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow City, Uttar Pradesh. J Environ Biol. 2004 Apr;25(2):191-5. PMID: 15529878
  21. Bajpai R, Upreti DK, Nayaka S. Accumulation of arsenic and fluoride in lichen P. cocoes (Sw.) Nyl., growing in the vicinity of coal– based thermal power plant at Raebareli, India. Journal of Experimental Sciences. 2010;1(4):34-37. https://bit.ly/3JRXB4V
  22. Karakoti N, Bajpai R, Upreti DK, Mishra GK, Srivastava A, Nayaka S. Effect of metal content on chlorophyll fluorescens and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl: A case study from Uttar Pradesh. Environemntal Earth Sciences. 2014;71(5):2177-2183. https://tinyurl.com/5aad4j6a.
  23. Manoharachary C, Deshaboina N. Biodiversity, taxonomy and plant disease diagnostics of plant pathogenic fungi from India. Indian Phytopathology. 2021;74(2):413-423. https://tinyurl.com/mufb6n6f
  24. Rather LJ, Islam S, Khan MA, Mohammad F. Adsorption and kinetic studies of Adhatodavasica natural dye onto woolen yarn with evaluations of Colorimetric and Fluorescence Characteristics. J Env Chem Eng. 2016;4;1780-1796. doi: 10.1016/j.jece.2016.03.003.
  25. Cardon D. Natural Dyes: Sources, Tradition, Technology and Science, Archetype Publications, London. 2007. https://tinyurl.com/47h863mw
  26. Devkota S, Chaudhary RP, Werth S, Scheidegger C. Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. J Ethnobiol Ethnomed. 2017 Feb 21;13(1):15. doi: 10.1186/s13002-017-0142-2. PMID: 28222809; PMCID: PMC5320728.
  27. Schweppe H. Handbuch der Naturfarbstoffe, Ecomed. Landsberg/Lech. 1993. https://tinyurl.com/4ffkt3n4
  28. Rather LJ, Islam S, Azam M, Shabbir M, Bukhari MN, Shahid M, Khan MA, Haque QM, Mohammad F. Antimicrobial and fluorescence finishing of woolen yarn with Terminaliaarjunanatural dye as an ecofriendly substitute to synthetic Antibacterial agents. RSC Adv. 2016;6:39080-39094. doi: 10.1039/C6RA02717B.
  29. Schalock PC. Lichen extracts. Dermatitis. 2009;Jan-Feb;20(1):53-4. PMID: 19321121
  30. Sheu M, Simpson EL, Law SV, Storrs FJ. Allergic contact dermatitis from a natural deodorant: A report of 4 cases associated with lichen acid mix allergy. J Am Acad Dermatol. 2006 Aug;55(2):332-7. doi: 10.1016/j.jaad.2004.12.043. PMID: 16844524
  31. Julien AA. On the Decay of Building Stone, part 1 and 2. Trans. N.Y. Acad. Se. 1982;2:67-79.
  32. Syers JK, Iscandar I. Pedogenetic Significance of Lichens. In: Amadjian V, Hale ME (ed.), The Lichens. Academic Press, London. 1973;225-248.
  33. Marques J, Gonçalves J, Oliveira C, Favero-Longo SE, Paz-Bermúdez G, Almeida R, Prieto B. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments. Ecology. 2016 Oct;97(10):2844-2857. doi: 10.1002/ecy.1525. PMID: 27859114.
  34. Association Française de Normalisation (AFNOR). Huiles Essentielles, Tome 2, Monographies Relatives Aux Huiles Essentielles, 6th ed. AFNOR, Association Française de Normalisation: Paris, France. 2000. https://tinyurl.com/4r8byrtn
  35. Carette Delacour AS. La Lavande et son Huile Essentielle. Ph.D. Thesis, Université Lille 2, Lille, France, 2000.
  36. Elkhateeb WA, Elnahas MO, Daba GM. Lichentherapy: Highlights on the Pharmaceutical Potentials of Lichens. Open Access Journal of Microbiology & Biotechnology. 2021;6(1):1-10. doi: 10.23880/oajmb-16000190.
  37. Elkhateeb WA, Daba GM. Lichens, an alternative drugs for modern diseases. International Journal of Research in Pharmacy and Biosciences. 2019;6(10):5-9. https://tinyurl.com/3zvz52rt
  38. Ahmed E, Elkhateeb W, Taie H, Rateb M, Fayad W. Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. Journal of Applied Pharmaceutical Science. 2017;7(01):098-103. doi: 10.7324/JAPS.2017.70113.
  39. El-Garawani IM, Elkhateeb WA, Zaghlol GM, Almeer RS, Ahmed EF, Rateb ME, Abdel Moneim AE. Candelariella vitellina extract triggers in vitro and in vivo cell death through induction of apoptosis: A novel anticancer agent. Food Chem Toxicol. 2019 May;127:110-119. doi: 10.1016/j.fct.2019.03.003. Epub 2019 Mar 7. PMID: 30853555
  40. El-Garawani I, Emam M, Elkhateeb W, El-Seedi H, Khalifa S, Oshiba S, Abou-Ghanima S, Daba G. In Vitro Antigenotoxic, Antihelminthic and Antioxidant Potentials Based on the Extracted Metabolites from Lichen, Candelariella vitellina. Pharmaceutics. 2020 May 24;12(5):477. doi: 10.3390/pharmaceutics12050477. PMID: 32456266; PMCID: PMC7285106
  41. Elkhateeb WA, Daba, GM. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses. Egyptian Pharmaceutical Journal. 2020;19(3):216. https://tinyurl.com/3dwhdzwe
  42. Elkhateeb WA, Daba, GM, El-Dein AN, Sheir DH, Fayad W, Shaheen MN, Wen TC. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom, Ganoderma applanatum. Egyptian Pharmaceutical Journal. 2020;19(1):67. https://tinyurl.com/3kvnbzs5
  43. Elkhateeb WA, Daba GM, Sheir D, Hapuarachchi KK, Thomas PW. Mysterious World of Lichens: Highlights on Their History, Applications, and Pharmaceutical Potentials. The Natural Products Journal. 2021;11(3):275-287. doi: 10.2174/2210315510666200128123237.
  44. Elkhateeb WA, Daba GM. Fungi over fungi, endophytic fungi associated with mushroom fruiting bodies and lichens. Journal of Pharmaceutics and Pharmacology Research. 2021;4(2):1-4. doi: 10.31579/2693-7247/028.
  45. Elkhateeb W, Somasekhar T, Thomas P, Wen TC, Daba G. Mycorrhiza and lichens as two models of fungal symbiosis. Journal of Microbiology, Biotechnology and Food Sciences. 2021;11(3). doi: 10.15414/jmbfs.4644.
  46. Malhotra S, Subban RA, Singh A. Lichens-role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine. 2008;5(2):1-5. https://tinyurl.com/yc6mw8wt
  47. Crawford SD. Lichens used in traditional medicine. In Lichen secondary metabolites. Springer, Cham. 2019;31-97. doi: 10.1007/978-3-319-13374-4_2.
  48. Huneck S. The significance of lichens and their metabolites. Naturwissenschaften. 1999 Dec;86(12):559-70. doi: 10.1007/s001140050676. PMID: 10643590
  49. Dandapat M, Paul S. Secondary metabolites from Usnea longissima and its pharmacological relevance. Phcog Research. 2019;11:103-109. doi: 10.4103/pr.pr_111_18.
  50. Stocker-Wörgötter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. 2008 Feb;25(1):188-200. doi: 10.1039/b606983p. Epub 2007 Oct 23. PMID: 18250902
  51. Behera BC, Verma N, Sonone A, Makhija U. Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnol Lett. 2005 Jul;27(14):991-5. doi: 10.1007/s10529-005-7847-3. PMID: 16132842


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search