Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9427645587

Parkinsons Disease-Like Neuropathology and Phenotype Following Induction of Oxidative Stress and Inflammation in the Brain

Medicine Group    Start Submission

Mojtaba Ehsanifar* and Zeinab Montazeri

Volume3-Issue1
Dates: Received: 2022-01-24 | Accepted: 2022-01-29 | Published: 2022-01-31
Pages: 105-110

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Exposure to ambient pollutants such as air pollutants also can be adversely impacted the Central Nervous System (CNS) by the activation of proinflammatory pathways and reactive oxygen species. Thus, targeting neuroinflammation and oxidative stress can be a useful strategy to eliminate the obvious symptoms of neurodegeneration. Overall, in the current mini-review, we examined the neuroprotective role of noradrenaline in the model of oxidative stress and neuroinflammation.

FullText HTML FullText PDF DOI: 10.37871/jbres1408


Certificate of Publication




Copyright

© 2022 Ehsanifar M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ehsanifar M, Montazeri Z. Parkinson’s Disease-Like Neuropathology and Phenotype Following Induction of Oxidative Stress and Inflammation in the Brain. J Biomed Res Environ Sci. 2022 Jan 31; 3(1): 105-110. doi: 10.37871/jbres1408, Article ID: JBRES1408, Available at: https://www.jelsciences.com/articles/jbres1408.pdf


Subject area(s)

References


  1. Geller MD, Sardar SB, Phuleria H, Fine PM, Sioutas C. Measurements of particle number and mass concentrations and size distributions in a tunnel environment. Environ Sci Technol. 2005 Nov 15;39(22):8653-8663. doi: 10.1021/es050360s. PMID: 16323759.
  2. Lanki T. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environmental Health Perspectives. 2006;114(5):655. https://tinyurl.com/mwutyfwd
  3. Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, Khalil AAK, Ahmad S, Faheem M, Khan AU, Shah FA, Li S. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019 Aug 2;13:2715-2727. doi: 10.2147/DDDT.S207310. PMID: 31447548; PMCID: PMC6683968.
  4. Jafari A, Ehsanifar. The share of different vehicles in air pollutant emission in tehran, using 2013 traffic information. Caspian Journal of Health Research. 2016;2(2):28-36. https://tinyurl.com/5n6tyk6y
  5. Ehsanifar M, Banihashemian, Farokhmanesh. Exposure to urban air pollution nanoparticles and cns disease. On J Neur & Br Disord. 2021;5(5):520-526. https://tinyurl.com/yckpyvyv
  6. Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, Jafari AJ. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. Ecotoxicol Environ Saf. 2019 Jan 30;168:338-347. doi: 10.1016/j.ecoenv.2018.10.090. Epub 2018 Nov 2. PMID: 30391838.
  7. Ehsanifar M, Jafari AJ, Nikzad H, Zavareh MS, Atlasi MA, Mohammadi H, Tameh AA. Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol Environ Saf. 2019 Jul 30;176:34-41. doi: 10.1016/j.ecoenv.2019.03.090. Epub 2019 Mar 25. PMID: 30921694.
  8. Ehsanifar M, Banihashemian, Ehsanifar. Exposure to air pollution nanoparticles: Oxidative stress and neuroinfl ammation. J Biomed Res Environ Sci. 2021;2(10):964-976. https://tinyurl.com/ykdbc6a7
  9. Ehsanifar M, Banihashemian, Farokhmanesh. Exposure to ambient ultra-fine particles and stroke. J Biomed Res Environ Sci. 2021;2(10):954-958. https://tinyurl.com/2p9ebxxe
  10. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010 Jun 1;121(21):2331-2378. doi: 10.1161/CIR.0b013e3181dbece1. Epub 2010 May 10. PMID: 20458016.
  11. Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience. 2009 Feb 6;158(3):1062-1073. doi: 10.1016/j.neuroscience.2008.07.031. Epub 2008 Jul 25. PMID: 18706982.
  12. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005 Aug;19(10):1329-1331. doi: 10.1096/fj.05-3776fje. Epub 2005 May 26. PMID: 15919760.
  13. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, Perry VH. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009 Feb 15;65(4):304-312. doi: 10.1016/j.biopsych.2008.07.024. Epub 2008 Sep 18. PMID: 18801476; PMCID: PMC2633437.
  14. Ehsanifar M, Montazeri Z, Taheri MA, Rafati M, Behjati M, Karimian M. Hippocampal inflammation and oxidative stress following exposure to diesel exhaust nanoparticles in male and female mice. Neurochem Int. 2021 May;145:104989. doi: 10.1016/j.neuint.2021.104989. Epub 2021 Feb 12. PMID: 33582162.
  15. Ehsanifar M. Airborne aerosols particles and COVID-19 transition. Environ Res. 2021 Sep;200:111752. doi: 10.1016/j.envres.2021.111752. Epub 2021 Jul 22. PMID: 34302822; PMCID: PMC8295061.
  16. Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Ther. 2010 Dec;128(3):519-548. doi: 10.1016/j.pharmthera.2010.08.007. Epub 2010 Sep 8. PMID: 20813131.
  17. Ehsanifar M, Jafari AJ, Montazeri Z, Kalantari RR, Gholami M, Ashtarinezhad A. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. J Environ Health Sci Eng. 2021 Jan 22;19(1):261-272. doi: 10.1007/s40201-020-00600-x. PMID: 34150234; PMCID: PMC8172730.
  18. Heemels MT. Neurodegenerative diseases. Nature. 2016 Nov 10;539(7628):179. doi: 10.1038/539179a. PMID: 27830810.
  19. Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel). 2018 May 11;11(2):44. doi: 10.3390/ph11020044. PMID: 29751602; PMCID: PMC6027455.
  20. Jiang B, Zhao Y, Cao J, Yang Y, Kuang T, Zhang Q, Liu X, Chen X, Liu X, Liao X, Zhou X, Xu Z. Synthesis and preliminary biological evaluation of naproxen-probenecid conjugate for Central Nervous System (CNS) delivery. Pak J Pharm Sci. 2021 Nov;34(6):2197-2203. PMID: 35034881.
  21. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015 Feb;16(2):109-120. doi: 10.1038/nrn3887. Epub 2015 Jan 15. PMID: 25588378; PMCID: PMC4312418.
  22. Ehsanifar M, Montazeri Z, Rafati M. Alzheimer’s disease-like neuropathology following exposure to ambient noise. J Biomed Res Environ Sci. 2021;2(11):1159-1162. https://tinyurl.com/yevheu6b
  23. Gitler AD, Dhillon, Shorter. Neurodegenerative disease: Models, mechanisms, and a new hope. The Company of Biologists Ltd. 2017;499-502. https://tinyurl.com/mtpf2k97
  24. Rafa-Zabłocka K, Kreiner G, Bagińska M, Kuśmierczyk J, Parlato R, Nalepa I. Transgenic mice lacking CREB and CREM in noradrenergic and serotonergic neurons respond differently to common antidepressants on tail suspension test. Sci Rep. 2017 Oct 18;7(1):13515. doi: 10.1038/s41598-017-14069-6. PMID: 29044198; PMCID: PMC5647346.
  25. Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA, Hage-Melim LIS. Parkinson's Disease: A Review from pathophysiology to treatment. Mini Rev Med Chem. 2020;20(9):754-767. doi: 10.2174/1389557519666191104110908. PMID: 31686637.
  26. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 2004 Oct;318(1):121-134. doi: 10.1007/s00441-004-0956-9. Epub 2004 Aug 24. PMID: 15338272.
  27. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003 Mar-Apr;24(2):197-211. doi: 10.1016/s0197-4580(02)00065-9. PMID: 12498954.
  28. Rommelfanger KS, Weinshenker D. Norepinephrine: The redheaded stepchild of Parkinson's disease. Biochem Pharmacol. 2007 Jul 15;74(2):177-190. doi: 10.1016/j.bcp.2007.01.036. Epub 2007 Feb 3. PMID: 17416354.
  29. Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement. Mov Disord. 2014 Dec;29(14):1710-1779. doi: 10.1002/mds.26048. Epub 2014 Oct 9. PMID: 25297066.
  30. Sotiriou E, Vassilatis DK, Vila M, Stefanis L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol Aging. 2010 Dec;31(12):2103-2114. doi: 10.1016/j.neurobiolaging.2008.11.010. Epub 2009 Jan 18. PMID: 19152986.
  31. Giguère N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in parkinson's disease. Front Neurol. 2018 Jun 19;9:455. doi: 10.3389/fneur.2018.00455. PMID: 29971039; PMCID: PMC6018545.
  32. Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain. 2019 Sep 1;142(9):2558-2571. doi: 10.1093/brain/awz193. PMID: 31327002; PMCID: PMC6736046.
  33. Giguère N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in parkinson's disease. Front Neurol. 2018 Jun 19;9:455. doi: 10.3389/fneur.2018.00455. PMID: 29971039; PMCID: PMC6018545.
  34. Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, Schaldemose JL, Knudsen K, Ismail R, Seger AD, Hansen AK, Stær K, Fink GR, Brooks DJ, Nahimi A, Borghammer P, Sommerauer M. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease. Brain. 2021 Oct 22;144(9):2732-2744. doi: 10.1093/brain/awab236. PMID: 34196700.
  35. Srinivasan J, Schmidt WJ. Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci. 2003 Jun;17(12):2586-2592. doi: 10.1046/j.1460-9568.2003.02684.x. PMID: 12823465.
  36. Masilamoni GJ, Groover O, Smith Y. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Neurobiol Dis. 2017 Apr;100:9-18. doi: 10.1016/j.nbd.2016.12.025. Epub 2016 Dec 30. PMID: 28042095; PMCID: PMC5511687.
  37. Kreiner G. Stimulation of noradrenergic transmission by reboxetine is beneficial for a mouse model of progressive parkinsonism. Scientific reports. 2019;9(1):1-9. https://tinyurl.com/2mxck4w9
  38. Pickrell AM, Pinto M, Moraes CT. Mouse models of parkinson's disease associated with mitochondrial dysfunction. Mol Cell Neurosci. 2013 Jul;55:87-94. doi: 10.1016/j.mcn.2012.08.002. Epub 2012 Aug 11. PMID: 22954895; PMCID: PMC3997253.
  39. Hu L, Zhang S, Ooi K, Wu X, Wu J, Cai J, Sun Y, Wang J, Zhu D, Chen F, Xia C. Microglia-derived NLRP3 activation mediates the pressor effect of prorenin in the rostral ventrolateral medulla of stress-induced hypertensive rats. Neurosci Bull. 2020 May;36(5):475-492. doi: 10.1007/s12264-020-00484-9. Epub 2020 Apr 3. PMID: 32242284; PMCID: PMC7186257.
  40. Wang Q, Liu, Zhou. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational neurodegeneration. 2015;4(1):1-9.
  41. Liddelow SA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487. https://tinyurl.com/6mt565ep
  42. Liu B, Teschemacher AG, Kasparov S. Neuroprotective potential of astroglia. J Neurosci Res. 2017 Nov;95(11):2126-2139. doi: 10.1002/jnr.24140. Epub 2017 Aug 24. PMID: 28836687.
  43. Tsutsumi R, Hori Y, Seki T, Kurauchi Y, Sato M, Oshima M, Hisatsune A, Katsuki H. Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem Biophys Res Commun. 2019 Apr 2;511(2):427-433. doi: 10.1016/j.bbrc.2019.02.076. Epub 2019 Feb 23. PMID: 30803759.
  44. Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci. 2018 Sep 11;12:626. doi: 10.3389/fnins.2018.00626. PMID: 30258347; PMCID: PMC6143806.
  45. Jiang L, Chen SH, Chu CH, Wang SJ, Oyarzabal E, Wilson B, Sanders V, Xie K, Wang Q, Hong JS. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis. Glia. 2015 Jun;63(6):1057-1072. doi: 10.1002/glia.22801. Epub 2015 Mar 4. PMID: 25740080; PMCID: PMC4405498.
  46. Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016 Oct;139 Suppl 2:154-178. doi: 10.1111/jnc.13447. Epub 2016 Mar 10. PMID: 26968403.
  47. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014 Sep 3;34(36):11929-47. doi: 10.1523/JNEUROSCI.1860-14.2014. Erratum in: J Neurosci. 2015 Jan 14;35(2):846-866. PMID: 25186741; PMCID: PMC4152602.
  48. Dello Russo C, Boullerne AI, Gavrilyuk V, Feinstein DL. Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1beta production. J Neuroinflammation. 2004 Jun 30;1(1):9. doi: 10.1186/1742-2094-1-9. PMID: 15285793; PMCID: PMC500870.
  49. Braun SM, Jessberger S. Adult neurogenesis: mechanisms and functional significance. Development. 2014 May;141(10):1983-1986. doi: 10.1242/dev.104596. PMID: 24803647.
  50. Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J, Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schütz G, Grummt I, Parlato R. A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ. 2013 Nov;20(11):1455-1464. doi: 10.1038/cdd.2013.66. Epub 2013 Jun 14. PMID: 23764776; PMCID: PMC3792439.
  51. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63. doi: 10.1615/critrevimmunol.v32.i1.30. PMID: 22428854; PMCID: PMC3410706.
  52. Cockey SG, McFarland KN, Koller EJ, Brooks MMT, Gonzalez De La Cruz E, Cruz PE, Ceballos-Diaz C, Rosario AM, Levites YR, Borchelt DR, Golde TE, Giasson BI, Chakrabarty P. Il-10 signaling reduces survival in mouse models of synucleinopathy. NPJ Parkinsons Dis. 2021 Mar 19;7(1):30. doi: 10.1038/s41531-021-00169-8. PMID: 33741985; PMCID: PMC7979923.
  53. Koller EJ, Brooks MM, Golde TE, Giasson BI, Chakrabarty P. Inflammatory pre-conditioning restricts the seeded induction of α-synuclein pathology in wild type mice. Mol Neurodegener. 2017 Jan 3;12(1):1. doi: 10.1186/s13024-016-0142-z. PMID: 28049533; PMCID: PMC5210310.
  54. Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci. 2019 Aug;76(16):3167-3191. doi: 10.1007/s00018-019-03178-2. Epub 2019 Jun 13. PMID: 31197405.
  55. Choi DH, Kim YJ, Kim YG, Joh TH, Beal MF, Kim YS. Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem. 2011 Apr 22;286(16):14168-77. doi: 10.1074/jbc.M111.222430. Epub 2011 Feb 17. PMID: 21330369; PMCID: PMC3077618.
  56. Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 2007 Jan;21(1):179-187. doi: 10.1096/fj.06-5865com. Epub 2006 Nov 20. PMID: 17116747.
  57. Mori S, Sugama S, Nguyen W, Michel T, Sanna MG, Sanchez-Alavez M, Cintron-Colon R, Moroncini G, Kakinuma Y, Maher P, Conti B. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. J Neuroinflammation. 2017 Apr 21;14(1):88. doi: 10.1186/s12974-017-0862-1. PMID: 28427412; PMCID: PMC5399344.
  58. Morrison BE, Marcondes MC, Nomura DK, Sanchez-Alavez M, Sanchez-Gonzalez A, Saar I, Kim KS, Bartfai T, Maher P, Sugama S, Conti B. Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. J Immunol. 2012 Dec 15;189(12):5498-5502. doi: 10.4049/jimmunol.1102150. Epub 2012 Nov 19. PMID: 23169588; PMCID: PMC3545403.
  59. Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol. 2003;53 Suppl 3:S61-70; discussion S70-72. doi: 10.1002/ana.10489. PMID: 12666099.
  60. Kwon OC, Song JJ, Yang Y, Kim SH, Kim JY, Seok MJ, Hwang I, Yu JW, Karmacharya J, Maeng HJ, Kim J, Jho EH, Ko SY, Son H, Chang MY, Lee SH. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med. 2021 Apr 9;13(4):e13076. doi: 10.15252/emmm.202013076. Epub 2021 Mar 1. PMID: 33646633; PMCID: PMC8033538.
  61. Booth HDE, Wessely F, Connor-Robson N, Rinaldi F, Vowles J, Browne C, Evetts SG, Hu MT, Cowley SA, Webber C, Wade-Martins R. RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson's iPSC-derived astrocytes. Neurobiol Dis. 2019 Sep;129:56-66. doi: 10.1016/j.nbd.2019.05.006. Epub 2019 May 11. PMID: 31085228.
  62. Gomes-Duarte A, Lacerda R, Menezes J, Romão L. eIF3: a factor for human health and disease. RNA Biol. 2018 Jan 2;15(1):26-34. doi: 10.1080/15476286.2017.1391437. Epub 2017 Nov 13. PMID: 29099306; PMCID: PMC5785978.
  63. Kadoguchi N, Okabe S, Yamamura Y, Shono M, Fukano T, Tanabe A, Yokoyama H, Kasahara J. Mirtazapine has a therapeutic potency in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. BMC Neurosci. 2014 Jun 25;15:79. doi: 10.1186/1471-2202-15-79. PMID: 24965042; PMCID: PMC4076436.
  64. Kikuoka R, Miyazaki I, Kubota N, Maeda M, Kagawa D, Moriyama M, Sato A, Murakami S, Kitamura Y, Sendo T, Asanuma M. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci Rep. 2020 Nov 26;10(1):20698. doi: 10.1038/s41598-020-77652-4. PMID: 33244123; PMCID: PMC7693322.
  65. Yssel JD. Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the α2-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson’s disease. Brain, behavior, and immunity. 2018;69:456-469. https://tinyurl.com/4mmjeb7h
  66. Af Bjerkén S, Stenmark Persson R, Barkander A, Karalija N, Pelegrina-Hidalgo N, Gerhardt GA, Virel A, Strömberg I. Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance. Neurochem Int. 2019 Dec;131:104551. doi: 10.1016/j.neuint.2019.104551. Epub 2019 Sep 19. PMID: 31542295.
  67. Yao N, Wu Y, Zhou Y, Ju L, Liu Y, Ju R, Duan D, Xu Q. Lesion of the locus coeruleus aggravates dopaminergic neuron degeneration by modulating microglial function in mouse models of Parkinson׳s disease. Brain Res. 2015 Nov 2;1625:255-274. doi: 10.1016/j.brainres.2015.08.032. Epub 2015 Sep 3. PMID: 26342895.
  68. Song S, Wang Q, Jiang L, Oyarzabal E, Riddick NV, Wilson B, Moy SS, Shih YI, Hong JS. Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain Behav Immun. 2019 Oct;81:374-387. doi: 10.1016/j.bbi.2019.06.034. Epub 2019 Jun 24. PMID: 31247288; PMCID: PMC6754798.
  69. Parlato R, Kreiner G. Nucleolar activity in neurodegenerative diseases: A missing piece of the puzzle? J Mol Med (Berl). 2013 May;91(5):541-547. doi: 10.1007/s00109-012-0981-1. Epub 2012 Nov 20. PMID: 23179684; PMCID: PMC3644402.
  70. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010 Oct 22;40(2):216-227. doi: 10.1016/j.molcel.2010.09.024. PMID: 20965417; PMCID: PMC2987465.
  71. Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene. 2018 May;37(18):2351-2366. doi: 10.1038/s41388-017-0121-z. Epub 2018 Feb 12. PMID: 29429989; PMCID: PMC5931986.
  72. Pfister AS. Emerging role of the nucleolar stress response in autophagy. Frontiers in cellular neuroscience. 2019;13:156. https://tinyurl.com/2p8rkvhn
  73. Yang K, Yang J, Yi J. Nucleolar Stress: hallmarks, sensing mechanism and diseases. Cell Stress. 2018 May 10;2(6):125-140. doi: 10.15698/cst2018.06.139. PMID: 31225478; PMCID: PMC6551681.
  74. Rieker C, Engblom D, Kreiner G, Domanskyi A, Schober A, Stotz S, Neumann M, Yuan X, Grummt I, Schütz G, Parlato R. Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J Neurosci. 2011 Jan 12;31(2):453-460. doi: 10.1523/JNEUROSCI.0590-10.2011. PMID: 21228155; PMCID: PMC6623444.
  75. Sönmez A, Mustafa R, Ryll ST, Tuorto F, Wacheul L, Ponti D, Litke C, Hering T, Kojer K, Koch J, Pitzer C, Kirsch J, Neueder A, Kreiner G, Lafontaine DLJ, Orth M, Liss B, Parlato R. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death Dis. 2021 Dec 8;12(12):1139. doi: 10.1038/s41419-021-04432-x. PMID: 34880223; PMCID: PMC8655027.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search