Covid-19 Research

Case Report

OCLC Number/Unique Identifier: 9385858853

Fluid Dynamic Transcrestal Sinus Floor Elevation Using a New Surgical Instrument, Flusilift and Hyaluronic Acid as Only Biomaterial: A Case Report

Medicine Group    Start Submission

Alessandro Scarano*, Roberto Luongo, Mario Rampino, Eugenio Pedulla and Calogero Bugea

Volume2-Issue12
Dates: Received: 2021-12-17 | Accepted: 2021-12-27 | Published: 2021-12-29
Pages: 1267-1273

Abstract

Despite validated surgical techniques and the development of biomaterials, the procedures aimed at increasing the maxillary bone volume by sinus floor elevation have complications with various degrees of relevance.

The perforation of the Schneiderian membrane is one of the most frequent events while performing the detachment of the membrane and it can increase the risk of iatrogenic sinusitis, impairment of functional homeostasis, dispersion of the graft material in the antral cavity as well as its bacterial colonization with a subsequential failure of the procedure.

This report presents a case where transcrestal sinus lift was performed using Flusilift (Sweden & Martina, Due Carrare PD), a new instrument that allows fluid dynamic elevation of the sinus floor using saline solution to detach the Schneider’s membrane in an atraumatic way without using a sinus elevator and obtain an adequate alveolar ridge regeneration using hyaluronic acid in gel formulation to support an implant placement.
Hyaluronic acid seems to play a key role in wound healing and contributes to a faster bone neoformation in bone regeneration procedures.

FullText HTML FullText PDF DOI: 10.37871/jbres1381


Certificate of Publication




Copyright

© 2021 Scarano A, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Scarano A, Luongo R, Rampino M, Pedulla E, Bugea C. Fluid Dynamic Transcrestal Sinus Floor Elevation Using a New Surgical Instrument, Flusilift and Hyaluronic Acid as Only Biomaterial: A Case Report. J Biomed Res Environ Sci. 2021 Dec 29; 2(12): 1267-1273. doi: 10.37871/jbres1381, Article ID: JBRES1381, Available at: https://www.jelsciences.com/articles/jbres1381.pdf


Subject area(s)

University/Institute

References


  1. Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 1980 Aug;38(8):613-6. PMID: 6993637.
  2. Mc Gowan DA, Baxter PW, James J. The maxillary sinus and its dental implications. Oxford, UK: Wright, Butterworth-Heinemann Ltd; 1993. https://bit.ly/3EwUWKA
  3. Tatum H Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am. 1986 Apr;30(2):207-29. PMID: 3516738.
  4. Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium. 1994 Feb;15(2):152, 154-6, 158 passim; quiz 162. PMID: 8055503.
  5. Summers RB. The osteotome technique: Part 4--Future site development. Compend Contin Educ Dent. 1995 Nov;16(11):1090, 1092 passim; 1094-1096, 1098, quiz 1099. PMID: 8598008.
  6. Farina R, Franceschetti G, Travaglini D, Consolo U, Minenna L, Schincaglia GP, Riccardi O, Bandieri A, Maietti E, Trombelli L. Morbidity following transcrestal and lateral sinus floor elevation: A randomized trial. J Clin Periodontol. 2018 Sep;45(9):1128-1139. doi: 10.1111/jcpe.12985. Epub 2018 Aug 3. PMID: 29992594; PMCID: PMC6175473.
  7. Gargallo-Albiol J, Tattan M, Sinjab KH, Chan HL, Wang HL. Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study with endoscopic validation. Clin Oral Implants Res. 2019 Jan;30(1):11-19. doi: 10.1111/clr.13388. Epub 2018 Dec 23. PMID: 30450593.
  8. Al-Moraissi EA, Altairi NH, Abotaleb B, Al-Iryani G, Halboub E, Alakhali MS. What Is the Most Effective Rehabilitation Method for Posterior Maxillas With 4 to 8 mm of Residual Alveolar Bone Height Below the Maxillary Sinus With Implant-Supported Prostheses? A Frequentist Network Meta-Analysis. J Oral Maxillofac Surg. 2019 Jan;77(1):70.e1-70.e33. doi: 10.1016/j.joms.2018.08.009. Epub 2018 Aug 22. PMID: 30243705.
  9. Fugazzotto PA. Immediate implant placement following a modified trephine/osteotome approach: success rates of 116 implants to 4 years in function. Int J Oral Maxillofac Implants. 2002 Jan-Feb;17(1):113-20. PMID: 11858567.
  10. Sotirakis EG, Gonshor A. Elevation of the maxillary sinus floor with hydraulic pressure. J Oral Implantol. 2005;31(4):197-204. doi: 10.1563/1548-1336(2005)31[197:EOTMSF]2.0.CO;2. PMID: 16145848.
  11. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, Caputi S, Perrotti V, Mangano C, Piattelli A. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent. 2006 Jun;15(2):197-207. doi: 10.1097/01.id.0000220120.54308.f3. PMID: 16766904.
  12. Stacchi C, Spinato S, Lombardi T, Bernardello F, Bertoldi C, Zaffe D, Nevins M. Minimally Invasive Management of Implant-Supported Rehabilitation in the Posterior Maxilla, Part I. Sinus Floor Elevation: Biologic Principles and Materials. Int J Periodontics Restorative Dent. 2020 May/Jun;40(3):e85-e93. doi: 10.11607/prd.4497. PMID: 32233183.
  13. Scarano A, Cholakis AK, Piattelli A. Histologic Evaluation of Sinus Grafting Materials After Peri-implantitis-Induced Failure: A Case Series. Int J Oral Maxillofac Implants. 2017 Mar/Apr;32(2):e69-e75. doi: 10.11607/jomi.5303. PMID: 28291856.
  14. Giovanni Abatangelo, Paola Brun. Integrated Biomaterials Science. Tissue Engineering New York: Kluwer Academic/Plenum; 2002.
  15. Cardaropoli G, Araújo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol. 2003 Sep;30(9):809-18. doi: 10.1034/j.1600-051x.2003.00366.x. PMID: 12956657.
  16. Sasaky T, Watanabe C. Stimulation of osteoinduction in bound wound healing by high-molecular hyaluronic acid. Bone 1995;16:9-15.doi:10.1016/8756-3282(95)80005-B
  17. Brunel G, Piantoni P, Piotrowski B, Baysse E. Action of Hyaluronic acid on the wound healing following extraction. Dent Inform 2004;7:385-91.
  18. Lopez MA, Casale M, Candotto V, Papalia R, Bressi F, Carinci F. The use of hyaluronic acid as a support of two different micronized biomaterials in crestal sinus lift procedures. A report on two case studies with volume comparison. J Biol Regul Homeost Agents. 2017 Dec 27;31(4 Suppl 2):129-138. PMID: 29202573.
  19. Sisti A, Canullo L, Mottola MP, Iannello G. A case series on crestal sinus elevation with rotary instruments. Eur J Oral Implantol. 2011 Summer;4(2):145-52. PMID: 21808764.
  20. Esposito M, Grusovin MG, Coulthard P, Worthington HV. The efficacy of various bone augmentation procedures for dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants. 2006 Sep-Oct;21(5):696-710. PMID: 17066630.
  21. Carusi G. The Minimal Invasive Sinus Elevation Technique. Scientific Poster, 15° European Association for Osseointegra- Tion, 5-7 Oct 2006; Scientific Poster, 12° International FRIADENT Symposium, 24-25 March 2006.
  22. Cosci F, Luccioli M. A new sinus lift technique in conjunction with placement of 265 implants: a 6-year retrospective study. Implant Dent. 2000;9(4):363-8. doi: 10.1097/00008505-200009040-00014. PMID: 11307560.
  23. Bernardello F, Righi D, Cosci F, Bozzoli P, Soardi CM, Spinato S. Crestal sinus lift with sequential drills and simultaneous implant placement in sites with <5 mm of native bone: a multicenter retrospective study. Implant Dent. 2011 Dec;20(6):439-44. doi: 10.1097/ID.0b013e3182342052. Erratum in: Implant Dent. 2013 Apr;22(2):202. Carlo, Maria Soardi [corrected to Soardi, Carlo Maria]. PMID: 21989240.
  24. Suk-Arj P, Wongchuensoontorn C, Taebunpakul P. Evaluation of bone formation following the osteotome sinus floor elevation technique without grafting using cone beam computed tomography: a preliminary study. Int J Implant Dent. 2019 Aug 1;5(1):27. doi: 10.1186/s40729-019-0181-7. PMID: 31367919; PMCID: PMC6669224.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search