Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9382541257

Virtual Screening of Phytochemicals Targeting the Main Protease and Spike Protein of SARS-CoV-2: An In silico Approach

Biology Group    Start Submission

Pallavi Gulati, Aarti Yadav, Jatin Chadha and Sandeepa Singh*

Volume2-Issue11
Dates: Received: 2021-11-15 | Accepted: 2021-11-20 | Published: 2021-11-23
Pages: 1121-1131

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an emerging virus responsible for the ongoing Coronavirus Disease 19 (COVID-19) pandemic. Despite the advent of COVID-19 vaccines, pandemic fatigue is still escalating as new SARS-CoV-2 variants emerge and vaccine shortages hit globally. Hence, drug repurposing remains an alternative strategy to combat SARS-CoV-2. For centuries, plants have served as natural reservoirs of pharmacologically active compounds with minimal cytotoxicity and promising antimicrobial and antiviral activities. In this light, the present study was undertaken to virtually screen 33 phytochemicals across various cultivars against the main protease (Mpro) and Spike (S) protein of SARS-CoV-2 using ADME analysis. 31 phytochemicals obeying Lipinski’s rules were subjected to molecular docking using AutoDock Vina. Docking scores were determined by selecting the best conformation of the protein-ligand complex that exhibited the highest affinity. The study identified withanone, licoflavone A, and silibinin to interact with the S protein at the hACE2-binding site with high binding energies. Similarly, myricitrin, withanone, naringenin, licoflavone A, and silibinin exhibited high binding affinities with the substrate-binding pocket of Mpro between the domains I and II. Interestingly, licoflavone A, silibinin, and withanone interacted with both Mpro and S proteins in silico. Further, drug-likeness studies indicated withanone to be the most readily bioavailable phytochemicals among the three shortlisted ligands. Therefore, phytochemicals can be regarded as potential leads for developing inhibitors against this mysterious virus. In vitro investigations are further warranted to prove their antiviral efficacy.

FullText HTML FullText PDF DOI: 10.37871/jbres1357


Certificate of Publication




Copyright

© 2021 Gulati P, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Gulati P, Yadav A, Chadha J, Singh S. Virtual Screening of Phytochemicals Targeting the Main Protease and Spike Protein of SARS-CoV-2: An In silico Approach. J Biomed Res Environ Sci. 2021 Nov 23; 2(11): 1121-1131. doi: 10.37871/jbres1357, Article ID: JBRES1357, Available at: https://www.jelsciences.com/articles/jbres1357.pdf


Subject area(s)

University/Institute

References


  1. Kaye AD, Okeagu CN, Pham AD, Silva RA, Hurley JJ, Arron BL, Sarfraz N, Lee HN, Ghali GE, Gamble JW, Liu H, Urman RD, Cornett EM. Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. Best Pract Res Clin Anaesthesiol. 2021 Oct;35(3):293-306. doi: 10.1016/j.bpa.2020.11.009. Epub 2020 Nov 17. PMID: 34511220; PMCID: PMC7670225.
  2. Celik İ, SaatCİ E, & Eyuboglu FÖ. Emerging and reemerging respiratory viral infections up to Covid-19. Turk J Med Sci. 2020;50(SI-1):557-562. doi: 10.3906/sag-2004-126. PMID: 32293833.
  3. Chadha J, Khullar L, Mittal N. Facing the wrath of enigmatic mutations: a review on the emergence of severe acute respiratory syndrome coronavirus 2 variants amid coronavirus disease-19 pandemic. Environ Microbiol. 2021; Online ahead of print. doi: 10.1111/1462-2920.15687. PMID: 34320263.
  4. Worldometer COVID-19 Coronavirus Pandemic [Internet]. 2021.
  5. Galindez G, Matschinske J, Rose TD, Sadegh S, Salgado-Albarrán M, Späth J, Baumbach J and Pauling JK. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci. 2021;1(1):33-41. doi: 10.1038/s43588-020-00007-6
  6. Chadha J, Gupta M, Nagpal N, Sharma M, Adarsh T, Joshi V, Tiku V, Mittal T, Nain VK, Singh A, Snigdha SK, Chandra NS, John S and Diwan P. Antibacterial potential of indigenous plant extracts against multidrug-resistant bacterial strains isolated from New Delhi region. GSC Biol Pharm Sci. 2021;14(2):185-196. doi: 10.30574/gscbps.2021.14.2.0053
  7. Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, Moriarty RM. Antiviral Activity of Phytochemicals: A Comprehensive Review. Mini Rev Med Chem. 2008;8(11):1106-1133. doi: 10.2174/138955708785909943. PMID: 18855727.
  8. Dao TT, Nguyen PH, Won HK, Kim EH, Park J, Won BY, Keun-Oh W. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem. 2012; 134(1):21-28. doi: 10.1016/j.foodchem.2012.02.015
  9. Sornpet B, Potha T, Tragoolpua Y, & Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med. 2017; 10(9):871-876. doi: 10.1016/j.apjtm.2017.08.010. PMID: 29080615
  10. Sarker MMR, Khan F, & Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.610912. PMID: 33981215.
  11. Chang JS, Wang KC, Yeh CF, Shieh DE, & Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2021;145(1):146-151. doi: 10.1016/j.jep.2012.10.043. PMID: 23123794.
  12. Kaushik S, Jangra G, Kundu V, Yadav JP, & Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. VirusDisease. 2020; 31(3):270-276. doi: 10.1007/s13337-020-00584-0. PMID: 32420412
  13. Dutta K, Elmezayen AD, Al-Obaidi A, Zhu W, Morozova OV, Shityakov S, Khalifa I. Seq12, Seq12m, and Seq13m, peptide analogues of the spike glycoprotein shows antiviral properties against SARS-CoV-2: An in silico study through molecular docking, molecular dynamics simulation, and MM-PB/GBSA calculations. J Mol Struct. 2021; 1246:131113. doi: 10.1016/j.molstruc.2021.131113. PMID: 34305174.
  14. Dutta K, Shityakov S, Morozova O, Khalifa I, Zhang J, Panda A and Ghosh C. Beclabuvir can inhibit the RNA-dependent RNA polymerase of newly emerged novel Coronavirus (SARS-CoV-2). Preprints 2020; 2020030395. doi: 10.20944/preprints202003.0395.v1
  15. Huang Y, Yang C, Xu X-f, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020; 41(9):1141-1149. doi: 10.1038/s41401-020-0485-4
  16. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582(7811):289-293. doi: 10.1038/s41586-020-2223-y. PMID: 32272481
  17. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020; 587(7835):657-662. doi: 10.1038/s41586-020-2601-5. PMID: 32726803.
  18. Shabat S, Yarmolinsky L, Porat D, & Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res. 2019; 10(2):354-367. doi: 10.1007/s13346-019-00691-6. PMID: 31788762.
  19. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009; 37:623-633. doi: 10.1093/nar/gkp456. PMID: 19498078.
  20. Celik I, Erol M, & Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol Divers. 2021. doi: 10.1007/s11030-021-10215-5. PMID: 33765239.
  21. Caly L, Druce JD, Catton MG, Jans DA, & Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi: 10.1016/j.antiviral.2020.104787. PMID: 32251768.
  22. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4):337-341. doi: 10.1016/j.ddtec.2004.11.007. PMID: 24981612.
  23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1). doi: 10.1038/srep42717
  24. Hiremath S, Kumar HDV, Nandan M, Mantesh M, Shankarappa KS, Venkataravanappa V, Basha CRJ, Reddy CNL. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech. 2021; 11(2). doi: 10.1007/s13205-020-02578-7. PMID: 33457171.
  25. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016; 11(5):905-919. doi: 10.1038/nprot.2016.051. PMID: 27077332.
  26. Wallace AC, Laskowski RA, & Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995; 8(2):127-134. doi: 10.1093/protein/8.2.127. PMID: 7630882.
  27. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008; 131(2):111-120. doi: 10.1016/j.virusres.2007.09.008. PMID: 17981353.
  28. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against coronavirus: A review of the non‐clinical and pre‐clinical data. Phytother Res. 2020; 34(10):2471-2492. doi: 10.1002/ptr.6700. PMID: 32248575.
  29. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, Fasciglione GF, Di Masi A, Di Pierro D, Bocedi A, Ascenzi P, Coletta M. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem Pharmacol. 2020; 182:114225. doi: 10.1016/j.bcp.2020.114225. PMID: 32956643.
  30. Garg S, Anand A, Lamba Y, & Roy A. Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor. Vegetos. 2020; 33(4):766-781. doi: 10.1007/s42535-020-00162-1. PMID: 33100613.
  31. Pantsar T & Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules. 2018; 23(8):1899. doi: 10.3390/molecules23081899. PMID: 30061498.
  32. Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, Zhang XC, Liao M, Bartlam M, Rao Z. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. J Virol. 2008; 82(5):2515-2527. doi: 10.1128/JVI.02114-07. PMID: 18094151.
  33. Chou CY, Chang HC, Hsu WC, Lin TZ, Lin CH, Chang GG. Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry. 2010; 115-128. doi: 10.1007/978-3-642-03683-5_8. PMID: 15554703.
  34. Kneller DW, Phillips G, O'Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A, Coates L, Kovalevsky A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat Commun. 2020; 11(1). doi: 10.1038/s41467-020-16954-7. PMID: 32581217.
  35. Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, Smith AJ, Gallaher J, Pianowski Z, Helgeson RC, Grjasnow A, Xiao R, Seetharaman J, Su M, Vorobiev S, Lew S, Forouhar F, Kornhaber GJ, Hunt JF, Montelione GT, Tong L, Houk KN, Hilvert D, Baker D. Computational Design of Catalytic Dyads and Oxyanion Holes for Ester Hydrolysis. J Am Chem Soc. 2012; 134(39):16197-16206. doi: 10.1021/ja3037367. PMID: 22871159.
  36. Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact. 2015; 230:21-29. doi: 10.1016/j.cbi.2015.01.030. PMID: 25656916.
  37. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368(6492):779-782. doi: 10.1126/science.abb7498. PMID: 32277040.
  38. Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018; 38(3):951-976. doi: 10.1002/med.21484. PMID: 29350407.
  39. Ríos JL. Effects of triterpenes on the immune system. J Ethnopharmacol. 2010; 128(1):1-14. doi: 10.1016/j.jep.2009.12.045. PMID: 20079412.
  40. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368(6489):409-412. doi: 10.1126/science.abb3405. PMID: 32198291.
  41. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281-292. doi: 10.1016/j.cell.2020.02.058. PMID: 32155444.
  42. Balkrishna A, Pokhrel S, Singh H, Joshi M, Mulay VP, Haldar S, Varshney A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. Drug Des Devel Ther. 2021; 15:1111-1133. doi: 10.2147/DDDT.S292805. PMID: 33737804.
  43. Dar NJ, Ahmad M. Neurodegenerative diseases and Withania somnifera (L.): An update. J Ethnopharmacol. 2020; 256:112769. doi: 10.1016/j.jep.2020.112769
  44. Gao R, et al. Withanone-Rich Combination of Ashwagandha Withanolides Restricts Metastasis and Angiogenesis through hnRNP-K. Mol Cancer Ther. 2014; 13(12):2930-2940. doi: 10.1158/1535-7163.MCT-14-0324. PMID: 32240781.
  45. Wadegaonkar VP & Wadegaonkar PA. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy. J Biotechnol. 2013;168(2):229-233. doi: 10.1016/j.jbiotec.2013.08.028. PMID: 23994265.
  46. Yang Y, Wang S, Bao YR, Li TJ, Yang GL, Chang X, Meng XS. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. J Ethnopharmacol. 2017;199:175-182. doi: 10.1016/j.jep.2017.01.053. PMID: 28159726.
  47. Tong WW, Zhang C, Hong T, Liu DH, Wang C, Li J, He XK, Xu WD. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep. 2018; 8(1). doi: 10.1038/s41598-018-21674-6. PMID: 29459717.
  48. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One. 2010;5(8):e12029. doi: 10.1371/journal.pone.0012029. PMID: 20808434.
  49. Freitas R & Schapira M. A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm. 2017; 8(10):1970-1981. doi: 10.1039/c7md00381a
  50. Lipinski CA, Lombardo F, Dominy BW, & Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0. PMID: 11259830.
  51. Chadha J, Harjai K and Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol. 2021; Online ahead of print. doi: 10.1111/1462-2920.15784. PMID: 34559444.
  52. Chadha J, Harjai K and Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol. 2021; Online ahead of publication. doi: 10.1111/1751-7915.13981


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search