Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9331606573

Antimicrobial Spectrum, Growth/Killing Kinetics, Conventional/Molecular Assay of Characterizing Non-Leguminous Endophytic Bacteria and Fungi from Helianthus annuus, Carica papaya and Lycoperesicum solanum

Biology Group    Start Submission

Osuntokun OT *, Azuh VO, Adejoro BF and Akele EO

Volume2-Issue10
Dates: Received: 2021-10-24 | Accepted: 2021-10-27 | Published: 2021-10-30
Pages: 1018-1034

Abstract

The aim of this study is to comparative study between conventional and molecular assay of isolation, identification and characterization of non-leguminous endophytic bacteria and fungi in the leguminous root samples. The plant root samples, Helianthus annuus, Carica papaya and Lycoperesicum solanum (Sunflower root and stem, pawpaw root and stem, and tomato root and stem from Adekunle Ajasin University School farm, Akungba Akoko, Ondo state, Nigeria. The isolation of endophytic bacteria were performed using the conventional method of isolation (biochemical test) and characterization were done using both the conventional and molecular method of bacteria characterization. The antibiotic susceptibility test (Antibiogram) was observed using disc diffusion. The four bacteria identified were Bacillus cereus, Enterobacter sp. Actnomycoses sp. and Aeromonas sp. for conventional method and Fusarium solani, Fusarium vortecelium and Bacillus thuringiensis for molecular method as confirmatory point of view. In this study, all isolated organisms tends to be Gram positive using the gram staining technique. Antibiogram shows the zones of inhibition with diameter ranging from 0-20 mm, Enterobacter sp. were more sensitive to the various antibiotics used. Ultraviolet spectrophotometer was also used to determine the growth dynamic as well as the death rate of the isolates, the addition of antibiotics (ciprofloxacin) to the isolates at the 24th hour speed up the death rate of the isolates from non-leguminous endophytic bacteria. After the preliminary identification of the bacteria isolates and the confirmatory identification of both bacteria and fungi isolates of the non-leguminous endophytic microorganism, it was noted that the preliminary identification was only able to achieve the genus level of taxonomic characterization, While the molecular method confirm the molecular sub level identification of isolates depletes the absolute taxonomic identification and characterization to the sub-species level. The results of this study validates the use of molecular sequencing for the assay identification and characterization of non-leguminous endophytic bacteria and fungi as the easy and best mode of identification of both bacteria and fungi isolates as a veritable tools for research purposes.

FullText HTML FullText PDF DOI: 10.37871/jbres1345


Certificate of Publication




Copyright

© 2021 Osuntokun OT, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Osuntokun OT, Azuh VO, Adejoro BF, Akele EO. Antimicrobial Spectrum, Growth/Killing Kinetics, Conventional/Molecular Assay of Characterizing Non-Leguminous Endophytic Bacteria and Fungi from Helianthus annuus, Carica papaya and Lycoperesicum solanum. J Biomed Res Environ Sci. 2021 Oct 30; 2(10): 1018-1034. doi: 10.37871/jbres1345, Article ID: JBRES1345, Available at: https://www.jelsciences.com/articles/jbres1345.pdf


Subject area(s)

University/Institute

References


  1. Pawlowski K, Twigg P, Dobritsa S, Guan C, Mullin BC. A nodule-specific gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins expressed in the early stages of actinorhizal nodule development. Mol Plant Microbe Interact. 1997 Jul;10(5):656-64. doi: 10.1094/MPMI.1997.10.5.656. PMID: 9204569.
  2. Behie SW, Zelisko PM, Bidochka MJ. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science. 2012 Jun 22;336(6088):1576-7. doi: 10.1126/science.1222289. PMID: 22723421.
  3. Faisal M Anis M. Rapid in vitro propagation of Rauvolfia tetraphylla L.-an endangered medicinal plant Physiol. Mol Biol Plants. 2002;8:295-299. https://tinyurl.com/x45ta69w
  4. Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, Hager A, Weill Eng R, Bioch JB. Zinc as an essential micronutrient. A review Nutr Res. 2000;20:737-755. doi: 10.1016/S0271-5317(00)00163-9
  5. Agrios G. Plant Pathology. 5th Ed, Elsevier Academic Press, Amsterdam. 2005;26:398-401. https://tinyurl.com/f9s3bvya
  6. Freeman A, Franciscovich A, Bowers M, Sandstrom DJ, Sanyal S. NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila. Mol Cell Neurosci. 2011 Feb;46(2):535-47. doi: 10.1016/j.mcn.2010.12.010. Epub 2010 Dec 24. PMID: 21185939; PMCID: PMC3030698.
  7. Lemma W, Bizuneh A, Tekie H, Belay H, Wondimu H, Kassahun A, Shiferaw W, Balkew M, Abassi I, Baneth G, Hailu A. Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting Leishmania infections in rodents. Asian Pac J Trop Med. 2017 Apr;10(4):418-422. doi: 10.1016/j.apjtm.2017.03.018. Epub 2017 Apr 6. PMID: 28552113.
  8. Guo ZT, Peng SZ, Hao QZ, Biscay PE, Liu TS. Origin of the miocene-pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001;170:11-26. doi: 10.1016/S0031-0182(01)00235-8
  9. Knapp AK, Smith MD. Variation among biomes in temporal dynamics of aboveground primary production. Science. 2001 Jan 19;291(5503):481-4. doi: 10.1126/science.291.5503.481. PMID: 11161201.
  10. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18450-7. doi: 10.1073/pnas.0605697103. Epub 2006 Nov 20. PMID: 17116870; PMCID: PMC1697795.
  11. Jumpponen A. Spatial distribution of discrete RAPD phenotypes of a root endophytic fungus, Phialocephala fortinii, at a primary successional site on a glacier forefront. New Phytol. 1999 Feb;141(2):333-344. doi: 10.1046/j.1469-8137.1999.00344.x. PMID: 33862922.
  12. Amusa NA, Baiyewu AR. Storage and market diseases of yam tubers in South-Western Nigeria, Ogun state. Journal of Agricultural Research. 2003;11:211-255. https://tinyurl.com/ave9ec45
  13. Badillo VM. Carica L vs Vasconcella St. Hil. (Caricaceae) con la rehabilitacio´n de este u´ltimo. Ernstia. 10: 74-79.
  14. Emeruwa AC. Antibacterial substance from Carica papaya fruit extract. J Nat Prod. 1982 Mar-Apr;45(2):123-7. doi: 10.1021/np50020a002. PMID: 7097295.
  15. Osuntokun OT, Bankole OM, Abike TO, Joy OE, Adenike AF. Systematic comparative study of selected antibiotics and sulphur/ medicinal plant mediated nano-particles against non-leguminous endophytic bacteria and clinical isolates. Journal of Applied Life Sciences International. 2020;23:43-56. doi:10.9734/jalsi/2020/v23i1030192
  16. Schulz B, Wanke U, Draeger S, Aust HJ. Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycological Research. 1993;97:1447-1450. doi:10.1016/S0953-7562(09)80215-3
  17. Osuntokun OT, Fasusi OA, Ogunmodede AF, Thonda AO, Oladejo BO, Yusuf Babatunde AM, Ige OO. Phytochemical Composition and Antimicrobial Activity of Daniella oliveri Extracts on Selected Clinical Microorganisms. International Journal of Biochemistry Research & Review. 2016;14:1-13, doi: 10.9734/IJBCRR/2016/28764
  18. Olutiola PO, Famurewa O, Sonntang HG. An Introduction to microbiology, practical Approach. Tertiary Text Book Series. 2000;45. doi: 10.12691/ajmr-6-1-4
  19. Bergey DH, Holt JG, Noel RK. Bergey's Manual of Systematic Bacteriology, 19th Ed. 1994. https://tinyurl.com/3xz4k3ec
  20. Cappuccino JG, Sherman N. Microbiology: A laboratory manual. Pearson Education Incorporated. 2002. https://tinyurl.com/7bww4nf5
  21. MacFaddin JF. Biochemical tests for identification of medical bacteria. 3rd Ed, 2000. https://tinyurl.com/7xvfypmu
  22. Fawole MO, Oso. 2007.BA, ISSN 1597-6343 Published by Faculty of Science.
  23. Wayne PA. Clinical and laboratory standards institute; Methods for dilution antimicrobial susceptibility testing for bacteria that grew aerobically. 2009;M7-A10 https://tinyurl.com/yuhn6pk6
  24. Olsvik O, Wahlberg J, Petterson B, Uhlén M, Popovic T, Wachsmuth IK, Fields PI. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol. 1993 Jan;31(1):22-5. doi: 10.1128/jcm.31.1.22-25.1993. PMID: 7678018; PMCID: PMC262614.
  25. Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics. 2009 Feb;93(2):105-11. doi: 10.1016/j.ygeno.2008.10.003. Epub 2008 Nov 21. PMID: 18992322.
  26. Callaway E. Million-year-old mammoth genomes shatter record for oldest ancient DNA-Permafrost-preserved teeth, up to 1.6 million years old, identify a new kind of mammoth in Siberia. Natur. 2021;590:537-538 https://tinyurl.com/m5wv35au
  27. Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: A rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012 Sep;14(9):2526-37. doi: 10.1111/j.1462-2920.2012.02791.x. Epub 2012 Jun 20. PMID: 22713159; PMCID: PMC3466414.
  28. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006 Jul;3(7):545-50. doi: 10.1038/nmeth896. PMID: 16791213.
  29. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016 May 17;17(6):333-51. doi: 10.1038/nrg.2016.49. PMID: 27184599.
  30. Grada A, Weinbrecht K. Next-generation sequencing: methodology and application. J Invest Dermatol. 2013 Aug;133(8):e11. doi: 10.1038/jid.2013.248. PMID: 23856935.
  31. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012 Jul 24;13:341. doi: 10.1186/1471-2164-13-341. PMID: 22827831; PMCID: PMC3431227.
  32. Osuntokun OT, Ibukun AF, Yusuf-Babatunde AM, Abiodun S. Pre/post-plasmid profile analysis, killing- kinetics and secondary metabolites screening of Adenopus breviflorus (Benth) fruit extract against Multiple Drug Resistant Isolates Using Staphylococcus aureus (MDRSA) as a case study. J Adv Res Biotech. 2019;4:1-17. https://tinyurl.com/2nfm4aw
  33. Posada F, Vega FE. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia. 2005 Nov-Dec;97(6):1195-200. doi: 10.3852/mycologia.97.6.1195. PMID: 16722213.
  34. Lei X, Wang ET, Chen WF, Sui XH, Chen WX. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol. 2008 Dec;190(6):657-71. doi: 10.1007/s00203-008-0418-y. Epub 2008 Aug 15. PMID: 18704366.
  35. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol. 2008 Mar;63(3):383-400. doi: 10.1111/j.1574-6941.2007.00424.x. Epub 2008 Jan 9. PMID: 18194345.
  36. Skarstad K, Steen HB, Boye E. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol. 1983 May;154(2):656-62. doi: 10.1128/jb.154.2.656-662.1983. PMID: 6341358; PMCID: PMC217513.
  37. Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA. A glimpse into past, present, and future DNA sequencing. Mol Genet Metab. 2013 Sep-Oct;110(1-2):3-24. doi: 10.1016/j.ymgme.2013.04.024. Epub 2013 May 11. Erratum in: Mol Genet Metab. 2015 Mar;114(3):484. PMID: 23742747.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search