Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9331581715

2D Materials for Environment, Energy, and Biomedical Applications

Environmental Sciences    Start Submission

Divya Chauhan, Mohammad Ashfaq, Neetu Talreja* and Ramalinga Viswanathan Managalraja*

Volume2-Issue10
Dates: Received: 2021-10-15 | Accepted: 2021-10-26 | Published: 2021-10-27
Pages: 977-984

Abstract

Recently 2D materials are booming in the field of energy, environment, and biomedical application. Incorporation of metal/non-metal within 2D materials significantly influences the physical and chemical properties, making them intriguing materials for various applications. The advancement of 2D material requires strategic modification by manipulating the electronic structure, which remains a challenge. Herein, we describe 2D materials for the environment, energy, and biomedical application. A predominant aim of this short communication is to summarize the literature on the advanced environment, energy, and biomedical application (especially COVID-19).

FullText HTML FullText PDF DOI: 10.37871/jbres1340


Certificate of Publication




Copyright

© 2021 Chauhan D, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Chauhan D, Ashfaq M, Talreja N, Managalraja RV. 2D Materials for Environment, Energy, and Biomedical Applications. J Biomed Res Environ Sci. 2021 Oct 27; 2(10): 977-984. doi: 10.37871/jbres1340, Article ID: JBRES1340, Available at: https://www.jelsciences.com/articles/jbres1340.pdf


Subject area(s)

University/Institute

References


  1. Geng D, Yang HY. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Adv Mater. 2018 Nov;30(45):e1800865. doi: 10.1002/adma.201800865. Epub 2018 Jul 31. PMID: 30063268.
  2. Niu T, Zhang J, Chen W. Surface Engineering of Two-Dimensional Materials. ChemNanoMat. 2019;5:6-23. doi: 10.1002/cnma.201800181.
  3. Ng SW, Noor N, Zheng Z. Graphene-based two-dimensional Janus materials. NPG Asia Materials. 2018;10:217-237. https://go.nature.com/3vMZJos
  4. Peng X, Peng L, Wu C, Xie Y. Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev. 2014 May 21;43(10):3303-23. doi: 10.1039/c3cs60407a. Epub 2014 Mar 11. PMID: 24614864.
  5. Zhang P , Wang F , Yu M , Zhuang X , Feng X . Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev. 2018 Oct 1;47(19):7426-7451. doi: 10.1039/c8cs00561c. PMID: 30206606.
  6. Li X, Ran F, Yang F, Long J, Shao L. Advances in MXene Films: Synthesis, Assembly, and Applications. Transactions of Tianjin University. 2021;27:217-247. https://bit.ly/312lTYO
  7. Bhat A, Anwer S, Bhat KS, Mohideen MIH, Liao K, Qurashi A. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. 2D Materials and Applications. 2021;5:61. https://go.nature.com/3nyCL0Z
  8. Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater. 2021 Sep 1;131:62-79. doi: 10.1016/j.actbio.2021.06.047. Epub 2021 Jul 5. PMID: 34237423.
  9. Wang Y, Wang L, Zhang X, Liang X, Y. Feng, W. Feng, Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today. 2021;37:101059. doi: 0.1016/j.nantod.2020.101059.
  10. Mathkar, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Leela Mohana Reddy A, Ajayan PM. Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. The Journal of Physical Chemistry Letters. 2012;3:986-991.
  11. Ikram R, Jan BM, Ahmad W. Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. Journal of Materials Research and Technology. 2020;9:15924-15951. doi: 10.1016/j.jmrt.2020.11.043.
  12. Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. Waste Biomass Valorization. 2021 Sep 17:1-45. doi: 10.1007/s12649-021-01577-w. Epub ahead of print. PMID: 34548888; PMCID: PMC8446731.
  13. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018 Apr 3;9:1050-1074. doi: 10.3762/bjnano.9.98. PMID: 29719757; PMCID: PMC5905289.
  14. Ariga K, Watanabe S, Mori T, Takeya J. Soft 2D nanoarchitectonics. NPG Asia Materials. 2018;10:90-106. https://go.nature.com/3pGbSdT
  15. Schneemann A, Dong R, Schwotzer F, Zhong H, Senkovska I, Feng X, Kaskel S. 2D framework materials for energy applications. Chemical Science. 2021;12:1600-1619. doi: 10.1039/D0SC05889K.
  16. Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang WB, Yue K, Cheng SZD. Two-Dimensional Nanocrystals of Molecular Janus Particles. Journal of the American Chemical Society. 2014;136:10691-10699. doi: 10.1021/ja504497h.
  17. Pan Z, Li J, Zhou K. Wrinkle-free atomically thin CdS nanosheets for photocatalytic hydrogen evolution. Nanotechnology. 2018 May 25;29(21):215402. doi: 10.1088/1361-6528/aab4d5. Epub 2018 Mar 7. PMID: 29513263.
  18. Ju L, Shang J, Tang X, Kou L. Tunable Photocatalytic Water Splitting by the Ferroelectric Switch in a 2D AgBiP2Se6 Monolayer. Journal of the American Chemical Society. 2020;142:1492-1500. doi: 10.1021/jacs.9b11614.
  19. Yan X, Zhao H, Li T, Zhang W, Liu Q, Yuan Y, Huang L, Yao L, Yao J, Su H, Su Y, Gu J, Zhang D. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale. 2019;11:10203-10208. https://rsc.li/3jH6e7x.
  20. Yousaf Z, Sajjad S, Ahmed Khan Leghari S, Mehboob M, Kanwal A, Uzair B. Interfacial charge transfer via 2D-NiO and 2D-graphene nanosheets combination for significant visible photocatalysis. Journal of Solid State Chemistry. 2020;291:121606. doi: 10.1016/j.jssc.2020.121606.
  21. Jiang R, Lu G, Yan Z, Wu D, Liu J, Zhang X. Enhanced photocatalytic activity of a hydrogen bond-assisted 2D/2D Z-scheme SnNb2O6/Bi2WO6 system: Highly efficient separation of photoinduced carriers. Journal of Colloid and Interface Science. 2019;552:678-688. doi: 10.1016/j.jcis.2019.05.104.
  22. Chauhan D, Talreja N, Ashfaq M, Chapter 13 - Nanoadsorbents for wastewater remediation. In: Abd-Elsalam KA, Zahid M (Eds.) Aquananotechnology. Elsevier; 2021. p. 273-290. https://bit.ly/3CoV26Y
  23. Ashfaq M, Talreja N, Chauhan D, Rodríguez A, Mera AC, Mangalaraja RV. A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology. 2021;219:112204. doi: 10.1016/j.jphotobiol.2021.112204.
  24. Sasidharan V, Sachan D, Chauhan D, Talreja N, Ashfaq M. Three-dimensional (3D) polymer-metal-carbon framework for efficient removal of chemical and biological contaminants. Scientific Reports. 2021;11:7708. https://go.nature.com/3vLVLMU
  25. Afreen S, Omar RA, Talreja N, Chauhan D, Ashfaq M. Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. In: Prasad R, Aranda E (Eds.) Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology. Springer International Publishing; Cham: 2018. p. 369-392. https://bit.ly/3GjH8W2
  26. Ashfaq M, Talreja N, Chuahan D, Srituravanich W. Carbon Nanostructure-Based Materials: A Novel Tool for Detection of Alzheimer's Disease. In: Ashraf GM, Alexiou A (Eds.) Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease: Non-Pharmacological Therapies for Alzheimer's Disease. Singapore: Springer Singapore; 2019. p. 71-89. https://bit.ly/3ElJhPf
  27. Irsad, Talreja N, Chauhan D, Rodríguez CA, Mera AC, Ashfaq M. Nanocarriers: An Emerging Tool for Micronutrient Delivery in Plants. In: Aftab T, Hakeem KR (Eds.) Plant Micronutrients: Deficiency and Toxicity Management, Springer International Publishing; Cham: 2020. p. 373-387. https://bit.ly/3blGadv
  28. Afreen A, Talreja N, Chauhan D, Ashfaq M, Chapter 15 - Polymer/metal/carbon-based hybrid materials for the detection of heavy metal ions. In: Abd-Elsalam KA (Ed.) Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier; 2020. p. 335-353.
  29. Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale. 2020 Feb 14;12(6):3535-3559. doi: 10.1039/c9nr10178k. Epub 2020 Jan 31. PMID: 32003390.
  30. Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B, Qi X. Recent advances of monoelemental 2D materials for photocatalytic applications. J Hazard Mater. 2021 Mar 5;405:124179. doi: 10.1016/j.jhazmat.2020.124179. Epub 2020 Oct 23. PMID: 33261976.
  31. Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C. 2017;5:11992-12022. https://rsc.li/2ZsBBf3
  32. Kanahashi K, Pu J, Takenobu T. 2D Materials for Large-Area Flexible Thermoelectric Devices. Advanced Energy Materials. 2020;10:1902842. doi: 10.1002/aenm.201902842.
  33. Sun Z, Talreja N, Tao H, Texter J, Muhler M, Strunk J, Chen J. Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7610-7627. doi: 10.1002/anie.201710509. Epub 2018 May 16. PMID: 29219235.
  34. Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A. 2017;5:7257-7284. https://rsc.li/3nqCPzu
  35. Chauhan D, Afreen S, Talreja N, Ashfaq M. Chapter 8 - Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications. In: Abd-Elsalam KA (Ed.) Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier; 2020. p. 189-211.
  36. Ikram M, Khan MI, Raza A, Imran M, Ul-Hamid A, Ali S. Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Physica E: Low-dimensional Systems and Nanostructures. 2020;124:114246. doi: 10.1016/j.physe.2020.114246.
  37. Iqbal MA, Ali SI, Amin F, Tariq A, Iqbal MZ, Rizwan S. La- and Mn-Codoped Bismuth Ferrite/Ti3C2 MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS Omega. 2019 May 17;4(5):8661-8668. doi: 10.1021/acsomega.9b00493. PMID: 31459955; PMCID: PMC6648404.
  38. Zhu SR, Wu MK, Zhao WN, Liu PF, Yi FY, Li GC, Tao K, Han L. In Situ Growth of Metal–Organic Framework on BiOBr 2D Material with Excellent Photocatalytic Activity for Dye Degradation. Crystal Growth & Design. 2017;17:2309-2313. doi: 10.1021/acs.cgd.6b01811.
  39. Liu J, Hu ZY, Peng Y, Huang HW, Li Y, Wu M, Ke XX, Tendeloo GV, Su BL. 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B: Environmental. 2016;181:138-145. doi: 10.1016/j.apcatb.2015.07.054.
  40. Monga D, Basu S. Single-crystalline 2D BiOCl nanorods decorated with 2D MoS2 nanosheets for visible light-driven photocatalytic detoxification of organic and inorganic pollutants. FlatChem. 2021;28:100267. doi: 10.1016/j.flatc.2021.100267.
  41. Rodwihok C, Wongratanaphisan D, Thi Ngo YL, Khandelwal M, Hur SH, Chung JS. Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials (Basel). 2019 Oct 11;9(10):1441. doi: 10.3390/nano9101441. PMID: 31614525; PMCID: PMC6835891.
  42. Talreja N, Jung S, Yen LTH, Kim T. Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chemical Engineering Journal. 2020;379:122332.
  43. Forouzandeh P, Pillai SC. Two-dimensional (2D) electrode materials for supercapacitors. Materials Today: Proceedings. 2021;41:498-505. doi: 10.1016/j.matpr.2020.05.233.
  44. Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nature Energy. 2017;2: 17089. https://go.nature.com/3BdnqHS
  45. Khan K , Tareen AK , Aslam M , Zhang Y , Wang R , Ouyang Z , Gou Z , Zhang H . Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale. 2019 Nov 21;11(45):21622-21678. doi: 10.1039/c9nr05919a. PMID: 31702753.
  46. Rajapakse M, Karki B, Abu UO, Pishgar S, Musa MRK, Riyadh SMS, Yu M, Sumanasekera G, Jasinski JB. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Materials and Applications. 2021;5:30. https://go.nature.com/2XOKuPz
  47. Wang Z, Li R, Su C, Loh KP. Intercalated phases of transition metal dichalcogenides. SmartMat. 2020;1:e1013. doi: 10.1002/smm2.1013.
  48. Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Materials Research Bulletin. 2009;44:1811-1815. doi: 10.1016/j.materresbull.2009.05.018.
  49. Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, Du X, Du Z, Lv P, Åšwierczek K. MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes. ACS Nano. 2016 Sep 27;10(9):8526-35. doi: 10.1021/acsnano.6b03683. Epub 2016 Aug 26. PMID: 27556425.
  50. Liu F, Liu Y, Zhao X, Liu K, Yin H, Fan LZ. Prelithiated V2 C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. Small. 2020 Feb;16(8):e1906076. doi: 10.1002/smll.201906076. Epub 2020 Jan 27. PMID: 31984674.
  51. Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38:368-376. doi: 10.1016/j.nanoen.2017.06.009.
  52. Zhang M, Chen X, Sui J, Abraha BS, Li Y, Peng W, Zhang G, Zhang F, Fan X. Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorganic Chemistry Frontiers. 2020;7:1205-1211. https://rsc.li/3jIOrNl
  53. Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Advanced Energy Materials. 2018;8:1703043. doi: 10.1002/aenm.201703043.
  54. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials. 2017;27:1701264. doi: 10.1002/adfm.201701264.
  55. Yang W, Yang J, Byun JJ, Moissinac FP, Xu J, Haigh SJ, Domingos M, Bissett MA, Dryfe RAW, Barg S. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Adv Mater. 2019 Sep;31(37):e1902725. doi: 10.1002/adma.201902725. Epub 2019 Jul 25. PMID: 31343084.
  56. Lin TW, Sadhasivam T, Wang AY, Chen TY, Lin JY, Shao LD. Ternary Composite Nanosheets with MoS2/WS2/Graphene Heterostructures as High-Performance Cathode Materials for Supercapacitors. ChemElectroChem. 2018;5:1024-1031. doi: 10.1002/celc.201800043.
  57. Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano. 2020 Jul 28;14(7):7760-7782. doi: 10.1021/acsnano.0c04006. Epub 2020 Jun 29. PMID: 32571007; PMCID: PMC7325519.
  58. Varongchayakul N , Song J , Meller A , Grinstaff MW . Single-molecule protein sensing in a nanopore: a tutorial. Chem Soc Rev. 2018 Nov 26;47(23):8512-8524. doi: 10.1039/c8cs00106e. PMID: 30328860; PMCID: PMC6309966.
  59. Mohseni AH, Taghinezhad-S S, Xu Z, Fu X. Body fluids may contribute to human-to-human transmission of severe acute respiratory syndrome coronavirus 2: evidence and practical experience. Chin Med. 2020 Jun 5;15:58. doi: 10.1186/s13020-020-00337-7. PMID: 32514291; PMCID: PMC7273816.
  60. Navarra A, Albani E, Castellano S, Arruzzolo L, Levi-Setti PE. Coronavirus Disease-19 Infection: Implications on Male Fertility and Reproduction. Front Physiol. 2020 Nov 17;11:574761. doi: 10.3389/fphys.2020.574761. PMID: 33312128; PMCID: PMC7704452.
  61. Morelli F, Meirelles LEF, de Souza MVF, Mari NL, Mesquita CSS, Dartibale CB, Damke GMZF, Damke E, da Silva VRS, Souza RP, Consolaro MEL. COVID-19 Infection in the Human Reproductive Tract of Men and Nonpregnant Women. Am J Trop Med Hyg. 2021 Jan 18;104(3):814–25. doi: 10.4269/ajtmh.20-1098. Epub ahead of print. PMID: 33534765; PMCID: PMC7941816.
  62. Fathi-Hafshejani P, Azam N, Wang L, Kuroda MA, Hamilton MC, Hasim S, Mahjouri-Samani M. Two-Dimensional-Material-Based Field-Effect Transistor Biosensor for Detecting COVID-19 Virus (SARS-CoV-2). ACS Nano. 2021 Jun 28:acsnano.1c01188. doi: 10.1021/acsnano.1c01188. Epub ahead of print. PMID: 34181385; PMCID: PMC8265534.
  63. Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, Lee CS, Jun S, Park D, Kim HG, Kim SJ, Lee JO, Kim BT, Park EC, Kim SI. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020 Apr 28;14(4):5135-5142. doi: 10.1021/acsnano.0c02823. Epub 2020 Apr 20. Erratum in: ACS Nano. 2020 Sep 22;14(9):12257-12258. PMID: 32293168; PMCID: PMC7172500.
  64. Muratore C, Muratore MK, Austin DR, Look P, Benton AK, Beagle LK, Motala MJ, Moore DC, Brothers MC, Kim SS, Krupa K, Back TA, Grant JT, Glavin NR. Biofunctionalized Two-dimensional MoS2Receptors for Rapid Response Modular Electronic SARS-CoV-2 and Influenza A Antigen Sensors. medRxiv. 2020. doi: 10.1101/2020.11.17.20233569.
  65. Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics. Advanced Functional Materials. 2021;2107407. doi: 10.1002/adfm.202107407.
  66. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Diagnostics for SARS-CoV-2 infections. Nat Mater. 2021 May;20(5):593-605. doi: 10.1038/s41563-020-00906-z. Epub 2021 Feb 15. PMID: 33589798; PMCID: PMC8264308.
  67. Lam CY, Zhang Q, Yin B, Huang Y, Wang H, Yang M, Wong SH. Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. Journal of Composites Science. 2021;5. doi: 10.3390/jcs5070190.
  68. Zhang B, Sun JY, Ruan MY, Gao PX. Tailoring two-dimensional nanomaterials by structural engineering for chemical and biological sensing. Sensors and Actuators Reports. 2020;2:100024. doi: 10.1016/j.snr.2020.100024.
  69. Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Deliv Transl Res. 2021 Sep 3:1–15. doi: 10.1007/s13346-021-01054-w. Epub ahead of print. PMID: 34476766; PMCID: PMC8413075.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search