Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9342075108

Understanding Acoustic Communication in Plants

Biology Group    Start Submission

Vijay Kumar Dalal*

Volume2-Issue9
Dates: Received: 2021-09-04 | Accepted: 2021-09-20 | Published: 2021-09-21
Pages: 815-820

Abstract

Responses of plants to environmental signals have been studied for a long time. These responses are exhibited in the form of morphological and physiological adaptations, and relaying the signal to environment (including other plants) through volatile organic compounds and extrinsic chemicals as well as proteins. However these signals do not correspond to the consciousness in the plants. Recent research in this field has produced evidence of non-physical signals e.g. sound and (electro) magnetic field. Plants produce such signals as well as perceive and respond to these signals. There are many novel techniques that have been used in last three-four decades to understand such signals, mostly acoustic signals. This review summarizes the old knowledge as well as recent developments in the area of generation, perception, integration and processing of acoustic signals by the plants as a response to the environment as well as to communicate among themselves. If understood fully, technological interventions and manipulations of these signals can add an extra tool for crop improvement.

FullText HTML FullText PDF DOI: 10.37871/jbres1314


Certificate of Publication




Copyright

© 2021 Vijay Kumar D. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Vijay Kumar D. Understanding Acoustic Communication in Plants. J Biomed Res Environ Sci. 2021 Sept 21; 2(9): 815-820. doi: 10.37871/jbres1314, Article ID: JBRES1314, Available at: https://www.jelsciences.com/articles/jbres1314.pdf


Subject area(s)

References


  1. Trewavas A, Baluška F, Mancuso S, Calvo P. Consciousness Facilitates Plant Behavior. Trends Plant Sci. 2020 Mar;25(3):216-217. doi: 10.1016/j.tplants.2019.12.015. Epub 2020 Jan 2. PMID: 31902571.
  2. Taiz L, Alkon D, Draguhn A, Murphy A, Blatt M, Hawes C, Thiel G, Robinson DG. Plants neither possess nor require consciousness. Trends in Plant Science. 2019 Aug 1;24(8):677-87.
  3. Margulis L, Sagan D. What is Life? New York, NY, USA: Simon & Schuster. 1995.
  4. Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010 Mar;15(3):176-84. doi: 10.1016/j.tplants.2010.01.006. Epub 2010 Feb 8. PMID: 20144557.
  5. Blumberg MS, Alberts JR. Ultrasonic vocalizations by rat pups in the cold: an acoustic by-product of laryngeal braking? Behav Neurosci. 1990 Oct;104(5):808-17. doi: 10.1037//0735-7044.104.5.808. PMID: 2244987.
  6. Blumberg MS, Sokoloff G. Do infant rats cry? Psychol Rev. 2001 Jan;108(1):83-95. doi: 10.1037/0033-295x.108.1.83. PMID: 11212634.
  7. Singh TC, Ponniah S. Effect of musical sound on veena on balsam. Proceedings of the Behar Academy of Agricultural Science. 1955;4:122-5.
  8. Singh TC, Ponniah S. On the response of structure of the leaves of Balsam and Mimosa to the muscial sounds of violin. In Proceedings of Indian Science Conggress 1955;42(3):254.
  9. Mishra RC, Bae H. Plant cognition: ability to perceive ‘Touch ’and ‘Sound’. In Sensory Biology of Plants. Springer: Singapore; 2019. p.137-162. doi: 10.1007/978-981-13-8922-1_6
  10. Gagliano M. Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol. 2013 Jul;24(4):789-796. doi: 10.1093/beheco/ars206. Epub 2012 Nov 25. PMID: 23754865; PMCID: PMC3677178.
  11. Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Sci Rep. 2016 Sep 26;6:33370. doi: 10.1038/srep33370. Erratum in: Sci Rep. 2016 Nov 24;6:37484. PMID: 27665921; PMCID: PMC5036088.
  12. Ghosh R, Gururani MA, Ponpandian LN, Mishra RC, Park SC, Jeong MJ, Bae H. Expression Analysis of Sound Vibration-Regulated Genes by Touch Treatment in Arabidopsis. Front Plant Sci. 2017 Jan 31;8:100. doi: 10.3389/fpls.2017.00100. PMID: 28197168; PMCID: PMC5281610.
  13. Jeong MJ, Shim CK, Lee JO, Kwon HB, Kim YH, Lee SK, Byun MO, Park SC. Plant gene responses to frequency-specific sound signals. Molecular Breeding. 2008 Feb;21(2):217-26. https://bit.ly/3ECo7xi
  14. Mishra RC, Ghosh R, Bae H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J Exp Bot. 2016 Aug;67(15):4483-94. doi: 10.1093/jxb/erw235. Epub 2016 Jun 23. PMID: 27342223.
  15. Kim JY, Kim SK, Jung J, Jeong MJ, Ryu CM. Exploring the sound-modulated delay in tomato ripening through expression analysis of coding and non-coding RNAs. Ann Bot. 2018 Dec 31;122(7):1231-1244. doi: 10.1093/aob/mcy134. PMID: 30010774; PMCID: PMC6324751.
  16. López-Ribera I, Vicient CM. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal Behav. 2017 Oct 3;12(10):e1368938. doi: 10.1080/15592324.2017.1368938. Epub 2017 Aug 22. PMID: 28829683; PMCID: PMC5647969.
  17. Khait I, Lewin-Epstein O, Sharon R, Saban K, Perelman R, Boonman A, Yovel Y, Hadany L. Plants emit informative airborne sounds under stress. bioRxiv. 2019 Jan 1;507590. doi: 10.1101/507590
  18. Appel HM, Cocroft RB. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia. 2014 Aug;175(4):1257-66. doi: 10.1007/s00442-014-2995-6. Epub 2014 Jul 2. PMID: 24985883; PMCID: PMC4102826.
  19. Jung J, Kim SK, Kim JY, Jeong MJ, Ryu CM. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. Front Plant Sci. 2018 Jan 30;9:25. doi: 10.3389/fpls.2018.00025. PMID: 29441077; PMCID: PMC5797535.
  20. Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S. Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot. 2013 Nov;64(15):4779-91. doi: 10.1093/jxb/ert193. Epub 2013 Jul 25. PMID: 23888067.
  21. Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Biology. 1989 Jun;40(1):19-36. https://bit.ly/3nPMbH5
  22. Pena J, Grace J. Water relations and ultrasound emissions of Pinus sylvestris L. before, during and after a period of water stress. New Phytologist. 1986 Jul;103(3):515-24. doi: 10.1111/j.1469-8137.1986.tb02889.x
  23. Perks MP, Irvine J, Grace J. Xylem acoustic signals from mature Pinus sylvestris during an extended drought. Annals of Forest Science. 2004 Jan 1;61(1):1-8. doi: 10.1051/forest:2003079
  24. Rosner S, Klein A, Wimmer R, Karlsson B. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? New Phytol. 2006;171(1):105-16. doi: 10.1111/j.1469-8137.2006.01736.x. PMID: 16771986; PMCID: PMC3196831.
  25. Zweifel R, Zeugin F. Ultrasonic acoustic emissions in drought-stressed trees--more than signals from cavitation? New Phytol. 2008;179(4):1070-1079. doi: 10.1111/j.1469-8137.2008.02521.x. Epub 2008 Jun 6. PMID: 18540974.
  26. Laschimke R, Burger M, Vallen H. Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol. 2006 Oct;163(10):996-1007. doi: 10.1016/j.jplph.2006.05.004. Epub 2006 Jul 26. PMID: 16872717.
  27. De Luca PA, Vallejo-Marín M. What’s the ‘buzz’ about? The ecology and evolutionary significance of buzz-pollination. Curr Opin Plant Biol. 2013 Aug;16(4):429-35. doi: 10.1016/j.pbi.2013.05.002. Epub 2013 Jun 8. PMID: 23751734.
  28. Weinberger P, Burton C. The effect of sonication on the growth of some tree seeds. Canadian Journal of Forest Research. 1981 Dec 1;11(4):840-4. doi: 10.1139/x81-123
  29. Miyoshi K, Mii M. Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Scientia Horticulturae. 1988 Apr 1;35(1-2):127-30. doi: 10.1016/0304-4238(88)90044-1
  30. Yi J, Bochu W, Xiujuan W, Daohong W, Chuanren D, Toyama Y, Sakanishi A. Effect of sound wave on the metabolism of Chrysanthemum roots. Colloids and Surfaces B: Biointerfaces. 2003 Jun 1;29(2-3):115-8.
  31. Bochu W, Jiping S, Biao L, Jie L, Chuanren D. Soundwave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Colloids Surf B Biointerfaces. 2004 Sep 1;37(3-4):107-12. doi: 10.1016/j.colsurfb.2004.03.004. PMID: 15342020.
  32. Klein RM, Edsall PC. On the reported effects of sound on the growth of plants. Bioscience. 1965 Feb 1;15(2):125-6. doi: 10.2307/1293353
  33. Weinberger P, Graefe U. The effect of variable-frequency sounds on plant growth. Canadian Journal of Botany. 1973 Oct 1;51(10):1851-6. doi: 10.1139/b73-237
  34. Weinberger P, Measures M. Effects of the intensity of audible sound on the growth and development of Rideau winter wheat. Canadian Journal of Botany. 1979 May 1;57(9):1036-9. doi: 10.1139/b79-128
  35. Weinberger P, Anderson P, Donovan LS. Changes in production, yield, and chemical composition of corn (Zea mays) after ultrasound treatments of the seeds. Radiat Environ Biophys. 1979 Feb 23;16(1):81-8. doi: 10.1007/BF01326899. PMID: 472111.
  36. Creath K, Schwartz GE. Measuring effects of music, noise, and healing energy using a seed germination bioassay. J Altern Complement Med. 2004 Feb;10(1):113-22. doi: 10.1089/107555304322849039. PMID: 15025885.
  37. Telewski FW. A unified hypothesis of mechanoperception in plants. Am J Bot. 2006 Oct;93(10):1466-76. doi: 10.3732/ajb.93.10.1466. PMID: 21642094.
  38. Gagliano M, Renton M, Duvdevani N, Timmins M, Mancuso S. Out of sight but not out of mind: alternative means of communication in plants. PLoS One. 2012 May 22;7(5):e37382. doi: 10.1371/journal.pone.0037382
  39. Kim JY, Lee HJ, Kim JA, Jeong MJ. Sound Waves Promote Arabidopsis thaliana Root Growth by Regulating Root Phytohormone Content. Int J Mol Sci. 2021 May 27;22(11):5739. doi: 10.3390/ijms22115739. PMID: 34072151; PMCID: PMC8199107.
  40. Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D, Bouteau F, Baluska F, Mancuso S. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots. Plant Sci. 2017 Nov;264:9-15. doi: 10.1016/j.plantsci.2017.08.001. Epub 2017 Aug 10. PMID: 28969806.
  41. Gagliano M, Grimonprez M, Depczynski M, Renton M. Tuned in: plant roots use sound to locate water. Oecologia. 2017 May;184(1):151-160. doi: 10.1007/s00442-017-3862-z. Epub 2017 Apr 5. PMID: 28382479.
  42. Kim JY, Lee JS, Kwon TR, Lee SI, Kim JA, Lee GM, Park SC, Jeong MJ. Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biology and Technology. 2015 Dec 1;110:43-50. doi: 10.1016/j.postharvbio.2015.07.015
  43. Kim JY, Lee SI, Kim JA, Park SC, Jeong MJ. Sound waves increases the ascorbic acid content of alfalfa sprouts by affecting the expression of ascorbic acid biosynthesis-related genes. Plant Biotechnology Reports. 2017 Oct;11(5):355-64. https://bit.ly/3CvLZ3H
  44. Kim JY, Kang YE, Lee SI, Kim JA, Muthusamy M, Jeong MJ. Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea and Raphanus sativus sprouts. J Sci Food Agric. 2020 Jan 15;100(1):431-440. doi: 10.1002/jsfa.10077. Epub 2019 Nov 7. PMID: 31598969; PMCID: PMC6899831.
  45. Takahashi H, Suge H, Kato T. Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant and Cell Physiology. 1991 Jul 1;32(5):729-32. doi: 10.1093/oxfordjournals.pcp.a078137
  46. Johnson KA, Sistrunk ML, Polisensky DH, Braam J. Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiol. 1998 Feb;116(2):643-9. doi: 10.1104/pp.116.2.643. PMID: 9489014; PMCID: PMC35122.
  47. Bochu W, Jiping S, Biao L, Jie L, Chuanren D. Soundwave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Colloids Surf B Biointerfaces. 2004 Sep 1;37(3-4):107-12. doi: 10.1016/j.colsurfb.2004.03.004. PMID: 15342020.
  48. Body MJA, Neer WC, Vore C, Lin CH, Vu DC, Schultz JC, Cocroft RB, Appel HM. Caterpillar Chewing Vibrations Cause Changes in Plant Hormones and Volatile Emissions in Arabidopsis thaliana. Front Plant Sci. 2019 Jun 26;10:810. doi: 10.3389/fpls.2019.00810. PMID: 31297123; PMCID: PMC6607473.
  49. Body MJA, Dave DF, Coffman CM, Paret TY, Koo AJ, Cocroft RB, Appel HM. Use of Yellow Fluorescent Protein Fluorescence to Track OPR3 Expression in Arabidopsis Thaliana Responses to Insect Herbivory. Front Plant Sci. 2019 Nov 29;10:1586. doi: 10.3389/fpls.2019.01586. PMID: 31850048; PMCID: PMC6897264.
  50. Liu S, Jiao J, Lu TJ, Xu F, Pickard BG, Genin GM. Arabidopsis Leaf Trichomes as Acoustic Antennae. Biophys J. 2017 Nov 7;113(9):2068-2076. doi: 10.1016/j.bpj.2017.07.035. PMID: 29117529; PMCID: PMC5685652.
  51. Qin YC, Lee WC, Choi YC, Kim TW. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics. 2003 Jul;41(5):407-11. doi: 10.1016/s0041-624x(03)00103-3. PMID: 12788223.
  52. Li B, Wei J, Wei X, Tang K, Liang Y, Shu K, Wang B. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids Surf B Biointerfaces. 2008 Jun 1;63(2):269-75. doi: 10.1016/j.colsurfb.2007.12.012. Epub 2007 Dec 25. PMID: 18243669.
  53. Bochu W, Xin C, Zhen W, Qizhong F, Hao Z, Liang R. Biological effect of sound field stimulation on paddy rice seeds. Colloids and Surfaces B: Biointerfaces. 2003 Oct 1;32(1):29-34. doi: 0.1016/S0927-7765(03)00128-0
  54. Hou T, Li B, Teng G, Zhou Q, Xiao Y, Qi L. Application of acoustic frequency technology to protected vegetable production. Transactions of the Chinese Society of Agricultural Engineering. 2009 Feb 1;25(2):156-60.
  55. Meng Q, Zhou Q, Zheng S, Gao Y. Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia. 2012 Jan 1;16:346-52. doi: 10.1016/j.egypro.2012.01.057
  56. Jeong MJ, Cho JI, Park SH, Kim KH, Lee SK, Kwon TR, Park SC, Siddiqui ZS. Sound frequencies induce drought tolerance in rice plant. Pakistan Journal of Botany. 2014 Dec 1;46:2015-2020.
  57. Wassermann B, Korsten L, Berg G. Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves. Pathogens. 2021 Jan 12;10(1):63. doi: 10.3390/pathogens10010063. PMID: 33445765; PMCID: PMC7828301.
  58. Jiang S, Rao H, Chen Z, Liang M, Li L. Effects of sonic waves at different frequencies on propagation of Chlorella pyrenoidosa. Agricultural Science & Technology. 2012 Oct 1;13(10):2197.
  59. Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008 Oct;29(7):571-8. doi: 10.1002/bem.20426. PMID: 18512697.
  60. Aksyonov SI, Grunina TY, Goryachev SN. On the mechanisms of stimulation and inhibition of wheat seed germination by low-frequency magnetic field. Complex Systems Biophysics. 200 Apr;52(2):233-6. https://bit.ly/39mJofQ
  61. Maffei ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 2014 Sep 4;5:445. doi: 10.3389/fpls.2014.00445. PMID: 25237317; PMCID: PMC4154392.
  62. Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic Field (MF) Applications in Plants: An Overview. Plants (Basel). 2020 Sep 3;9(9):1139. doi: 10.3390/plants9091139. PMID: 32899332; PMCID: PMC7570196.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search