Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9342074676

Detection of Apoptosis Initiated in Treated HepG2 Cells with t-BHP: The Role of Phytochemicals to Reduce Toxicity and Stop Apoptosis

General Science    Start Submission

Maha J Hashim*

Volume2-Issue9
Dates: Received: 2021-08-24 | Accepted: 2021-09-02 | Published: 2021-09-03
Pages: 745-767

Abstract

Apoptosis or programmed cell death is a standard physiological mechanism. It is essential to control the number of cells, balance cell division and cell death, regulate the immune system, and eliminate pathogen-infected cells. Apoptosis entailed a different investigation to determine related biochemical reactions such as activated caspase, Reactive Oxygen Species (ROS), Lipid Peroxidation (LPO), and Evaluation of Glutathione Content (GSH) by using different techniques. HepG2 cells were exposed to +/- 0.4 and 0.8 mM t-BHP for specific times to induce toxicity for apoptosis detection. We aim to investigate the mechanism of cell death in treated HepG2 with t-BHP under consideration of the conditions of the cytoprotection assay. Results showed no strong evidence for apoptosis, although caspase-3 activity increased significantly (p ≤ 0.05) in treated HpG2 cells with 0.8 mM t-BHP at 150 minutes. The weak proof for apoptosis may attribute to the participation of Calpain through the cross-talk in blocking the caspase- activation.

Similarly, we obtained significant ROS and lipid peroxidation increases in treated HepG2 cells with 0.8 mM t-BHP (p ≤ 0.05 and 0.01 respectively) at 150 minutes. Moreover, reported a (non-significant) decline in GSH amounts. Treatment of the cells with Q and I3C under the conditions used in the cytoprotection study prevented the weak activation of caspase-3 identified by western blot.

FullText HTML FullText PDF DOI: 10.37871/jbres1306


Certificate of Publication




Copyright

© 2021 Hashim MJ. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Hashim MJ. Detection of Apoptosis Initiated in Treated HepG2 Cells with t-BHP: The Role of Phytochemicals to Reduce Toxicity and Stop Apoptosis. J Biomed Res Environ Sci. 2021 Sept 03; 2(9): 745-767. doi: 10.37871/jbres1306, Article ID: JBRES1306, Available at: https://www.jelsciences.com/articles/jbres1306.pdf


Subject area(s)

References


  1. Green DR. Apoptotic pathways: the roads to ruin. Cell. 1998 Sep 18;94(6):695-8. doi: 10.1016/s0092-8674(00)81728-6. PMID: 9753316.
  2. Huang Z. The chemical biology of apoptosis. Exploring protein-protein interactions and the life and death of cells with small molecules. Chem Biol. 2002 Oct;9(10):1059-72. doi: 10.1016/s1074-5521(02)00247-8. PMID: 12401491.
  3. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005 Apr;73(4):1907-16. doi: 10.1128/IAI.73.4.1907-1916.2005. PMID: 15784530; PMCID: PMC1087413.
  4. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306. doi: 10.1016/s0074-7696(08)62312-8. PMID: 7014501.
  5. Martin KR. Targeting apoptosis with dietary bioactive agents. Exp Biol Med (Maywood). 2006(b) Feb;231(2):117-29. doi: 10.1177/153537020623100201. PMID: 16446487.
  6. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003 Dec;15(6):725-31. doi: 10.1016/j.ceb.2003.10.009. PMID: 14644197.
  7. Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity. 1999 Jun;10(6):629-39. doi: 10.1016/s1074-7613(00)80062-x. PMID: 10403638.
  8. Bae SJ, Lee JS, Lee EK, Kim JM, Choi J, Heo HS, Yu BP, Chung HY. The anti-apoptotic action of 5-hydroxyindole: protection of mitochondrial integrity. Biol Pharm Bull. 2010;33(4):550-5. doi: 10.1248/bpb.33.550. PMID: 20410584.
  9. O’Callaghan YC, Woods JA, O’Brien NM. Characteristics of 7 beta-hydroxycholesterol-induced cell death in a human monocytic blood cell line, U937, and a human hepatoma cell line, HepG2. Toxicol In Vitro. 2002 Jun;16(3):245-51. doi: 10.1016/s0278-6915(02)00050-9. PMID: 12020597.
  10. Reed DJ. Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol. 1990;30:603-31. doi: 10.1146/annurev.pa.30.040190.003131. PMID: 2188580.
  11. Gilmont RR, Dardano A, Young M, Engle JS, Adamson BS, Smith DJ Jr, Rees RS. Effects of glutathione depletion on oxidant-induced endothelial cell injury. J Surg Res. 1998 Nov;80(1):62-8. doi: 10.1006/jsre.1998.5328. PMID: 9790816.
  12. Mans DR, Schuurhuis GJ, Treskes M, Lafleur MV, Retèl J, Pinedo HM, Lankelma J. Modulation by D,L-buthionine-S,R-sulphoximine of etoposide cytotoxicity on human non-small cell lung, ovarian and breast carcinoma cell lines. Eur J Cancer. 1992;28A(8-9):1447-52. doi: 10.1016/0959-8049(92)90541-9. PMID: 1325177.
  13. Schneider E, Yamazaki H, Sinha BK, Cowan KH. Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. Br J Cancer. 1995 Apr;71(4):738-43. doi: 10.1038/bjc.1995.144. PMID: 7710938; PMCID: PMC2033716.
  14. Martin KR. Targeting apoptosis with dietary bioactive agents. Exp Biol Med (Maywood). 2006(a) Feb;231(2):117-29. doi: 10.1177/153537020623100201. PMID: 16446487.
  15. Cai J, Jiang WG, Mansel RE. Inhibition of angiogenic factor- and tumour-induced angiogenesis by gamma linolenic acid. Prostaglandins Leukot Essent Fatty Acids. 1999 Jan;60(1):21-9. doi: 10.1054/plef.1998.0004. PMID: 10319914.
  16. Rose DP, Connolly JM, Liu XH. Effects of linoleic acid and gamma-linolenic acid on the growth and metastasis of a human breast cancer cell line in nude mice and on its growth and invasive capacity in vitro. Nutr Cancer. 1995;24(1):33-45. doi: 10.1080/01635589509514391. PMID: 7491296.
  17. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299-306. doi: 10.1016/s0968-0004(97)01085-2. PMID: 9270303.
  18. Mateos R, Goya L, Bravo L. Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. J Agric Food Chem. 2005 Dec 28;53(26):9897-905. doi: 10.1021/jf051721q. PMID: 16366672.
  19. Cui J, Nan KJ, Tian T, Guo YH, Zhao N, Wang L. Chinese medicinal compound delisheng has satisfactory anti-tumor activity, and is associated with up-regulation of endostatin in human hepatocellular carcinoma cell line HepG2 in three-dimensional culture. World J Gastroenterol. 2007 Nov 7;13(41):5432-9. doi: 10.3748/wjg.v13.i41.5432. PMID: 17907285; PMCID: PMC4171276.
  20. Jimenez-Lopez JM, Cederbaum AI. Green tea polyphenol epigallocatechin-3-gallate protects HepG2 cells against CYP2E1-dependent toxicity. Free Radic Biol Med. 2004 Feb 1;36(3):359-70. doi: 10.1016/j.freeradbiomed.2003.11.016. PMID: 15036355.
  21. Provin C, Takano K, Yoshida T, Sakai Y, Fujii T, Shirakashi R. Low O2 metabolism of HepG2 cells cultured at high density in a 3D microstructured scaffold. Biomed Microdevices. 2009 Apr;11(2):485-94. doi: 10.1007/s10544-008-9254-8. PMID: 19082898.
  22. Alía M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol. 2006(b) Apr 15;212(2):110-8. doi: 10.1016/j.taap.2005.07.014. Epub 2005 Aug 29. PMID: 16126241.
  23. Hashim MJ, Fry JR. A Cell-Based Assay for Antioxidant Behaviour of Phytochemicals: Influence of Exposure Time and Presence of Serum. J Biomed Res Environ Sci. 2021 July 27;2(7):610-617. doi: 10.37871/jbres1286 Article ID: JBRES1286. https://bit.ly/2YjVlRs
  24. Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C. Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochem Pharmacol. 2004;67(4):611-20. https://bit.ly/3gVFezY
  25. Kim CH, Yasumoto K, Suzuki T, Yoshida M. tert-butyl hydroperoxide-induced hemolysis of alpha-tocopherol-decreased erythrocytes from selenium-deficient and selenium-adequate rats. J Nutr Sci Vitaminol (Tokyo). 1988 Oct;34(5):481-90. doi: 10.3177/jnsv.34.481. PMID: 3230419.
  26. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000 Oct 12;407(6805):796-801. doi: 10.1038/35037734. PMID: 11048731.
  27. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239-57. doi: 10.1038/bjc.1972.33. PMID: 4561027; PMCID: PMC2008650.
  28. Lopaczynski W, Zeisel SH. Antioxidants, programmed cell death, and cancer. Nutrition Research. 2001;21(1-2):295-307 doi: 10.1016/S0271-5317(00)00288-8.
  29. Lauber K, Blumenthal SG, Waibel M, Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol Cell. 2004 May 7;14(3):277-87. doi: 10.1016/s1097-2765(04)00237-0. PMID: 15125832.
  30. Rodriguez M, Schaper J. Apoptosis: measurement and technical issues. J Mol Cell Cardiol. 2005 Jan;38(1):15-20. doi: 10.1016/j.yjmcc.2004.11.002. Epub 2004 Dec 9. PMID: 15623418.
  31. Schafer ZT, Kornbluth S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell. 2006 May;10(5):549-61. doi: 10.1016/j.devcel.2006.04.008. PMID: 16678772.
  32. Green DR, Bissonnette RP, Cotter TG. Apoptosis and cancer. Important Adv Oncol. 1994:37-52. PMID: 8206494.
  33. Malaguarnera L. Implications of apoptosis regulators in tumorigenesis. Cancer Metastasis Rev. 2004 Aug-Dec;23(3-4):367-87. doi: 10.1023/B:CANC.0000031774.32572.df. PMID: 15197336.
  34. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004 Nov;5(11):897-907. doi: 10.1038/nrm1496. PMID: 15520809.
  35. Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003 Jun;193:10-21. doi: 10.1034/j.1600-065x.2003.00048.x. PMID: 12752666.
  36. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell. 1994 Jul 29;78(2):343-52. doi: 10.1016/0092-8674(94)90303-4. PMID: 8044845.
  37. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994 Jul 28;370(6487):270-5. doi: 10.1038/370270a0. PMID: 8035875.
  38. Nagata S. Fas ligand-induced apoptosis. Annual Review of Genetics. 1999;33:29-55. doi: 10.1146/annurev.genet.33.1.29.
  39. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004 Jul 30;305(5684):626-9. doi: 10.1126/science.1099320. PMID: 15286356.
  40. Olson M, Kornbluth S. Mitochondria in apoptosis and human disease. Curr Mol Med. 2001 Mar;1(1):91-122. doi: 10.2174/1566524013364239. PMID: 11899246.
  41. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004 Jan 23;116(2):205-19. doi: 10.1016/s0092-8674(04)00046-7. PMID: 14744432.
  42. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002 Sep;2(9):647-56. doi: 10.1038/nrc883. PMID: 12209154.
  43. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147-57. doi: 10.1016/s0092-8674(00)80085-9. PMID: 8689682.
  44. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998 Jun;1(7):949-57. doi: 10.1016/s1097-2765(00)80095-7. PMID: 9651578.
  45. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997 Aug 8;90(3):405-13. doi: 10.1016/s0092-8674(00)80501-2. PMID: 9267021.
  46. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456-62. doi: 10.1126/science.7878464. PMID: 7878464.
  47. Zhang ZL, Wang Y, Zhou W, Hao YJ. Addison’s disease secondary to connective tissue diseases: a report of six cases. Rheumatol Int. 2009 Apr;29(6):647-50. doi: 10.1007/s00296-008-0749-7. Epub 2008 Oct 19. PMID: 18932000.
  48. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 2001 Jul;7(7):314-9. doi: 10.1016/s1471-4914(01)02026-3. PMID: 11425640.
  49. Fischer U, Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ. 2005 Aug;12 Suppl 1:942-61. doi: 10.1038/sj.cdd.4401556. PMID: 15665817.
  50. Alía M, Ramos S, Mateos R, Bravo L, Goya L. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol. 2005;19(2):119-28. doi: 10.1002/jbt.20061. PMID: 15849717.
  51. Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol. 1993;23(1):21-48. doi: 10.3109/10408449309104073. PMID: 8471159.
  52. Hyslop PA, Hinshaw DB, Halsey WA Jr, Schraufstätter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem. 1988 Feb 5;263(4):1665-75. PMID: 3338986.
  53. Lee KJ, Choi JH, Hwang YP, Chung YC, Jeong HG. Protective effect of caffeic acid phenethyl ester on tert-butyl hydroperoxide-induced oxidative hepatotoxicity and DNA damage. Food Chem Toxicol. 2008 Jul;46(7):2445-50. doi: 10.1016/j.fct.2008.03.032. Epub 2008 Apr 7. PMID: 18485557.
  54. Sohn JH, Han KL, Choo JH, Hwang JK. Macelignan protects HepG2 cells against tert-butylhydroperoxide-induced oxidative damage. Biofactors. 2007;29(1):1-10. doi: 10.1002/biof.5520290101. PMID: 17611289.
  55. Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol. 1985 May;78(3):473-83. doi: 10.1016/0041-008x(85)90255-8. PMID: 4049396.
  56. Lötscher HR, Winterhalter KH, Carafoli E, Richter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem. 1980 Oct 10;255(19):9325-30. PMID: 6773965.
  57. Lötscher HR, Winterhalter KH, Carafoli E, Richter C. Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4340-4. doi: 10.1073/pnas.76.9.4340. PMID: 41241; PMCID: PMC411570.
  58. Thornalley PJ, Trotta RJ, Stern A. Free radical involvement in the oxidative phenomena induced by tert-butyl hydroperoxide in erythrocytes. Biochim Biophys Acta. 1983 Aug 23;759(1-2):16-22. doi: 10.1016/0304-4165(83)90183-6. PMID: 6309246.
  59. Orrenius S, Ormstad K, Thor H, Jewell SA. Turnover and functions of glutathione studied with isolated hepatic and renal cells. Fed Proc. 1983 Dec;42(15):3177-88. PMID: 6315493.
  60. Tiwari M, Kakkar P. Plant derived antioxidants - Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol In Vitro. 2009 Mar;23(2):295-301. doi: 10.1016/j.tiv.2008.12.014. Epub 2008 Dec 24. PMID: 19135518.
  61. Henricks PAJ, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology & Therapeutics. 2001;14(6):409-421 doi: 10.1006/pupt.2001.0319.
  62. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23. PMID: 16430879.
  63. Keith M, Geranmayegan A, Sole MJ, et al. Increased oxidative stress in patients with congestive heart failure. Journal of the American College of Cardiology. 1998;31(6):1352-1356 doi: 10.1016/S0735-1097(98)00101-6.
  64. Christen Y. Oxidative stress and Alzheimer disease. American Journal of Clinical Nutrition. 2000;71(2):621s-629s.
  65. Kakkar P, Singh BK. Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem. 2007 Nov;305(1-2):235-53. doi: 10.1007/s11010-007-9520-8. Epub 2007 Jun 12. PMID: 17562131.
  66. Oh SH, Lim SC. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol. 2006 May 1;212(3):212-23. doi: 10.1016/j.taap.2005.07.018. Epub 2005 Sep 16. PMID: 16169029.
  67. Segovia M, Berges JA. INHIBITION OF CASPASE-LIKE ACTIVITIES PREVENTS THE APPEARANCE OF REACTIVE OXYGEN SPECIES AND DARK-INDUCED APOPTOSIS IN THE UNICELLULAR CHLOROPHYTE DUNALIELLA TERTIOLECTA(1). J Phycol. 2009 Oct;45(5):1116-26. doi: 10.1111/j.1529-8817.2009.00733.x. Epub 2009 Sep 28. PMID: 27032357.
  68. Devasagayam TP, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 2003 Oct;40(5):300-8. PMID: 22900323.
  69. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000 Oct;25(10):502-8. doi: 10.1016/s0968-0004(00)01674-1. PMID: 11050436.
  70. Rice-Evans C, Burdon R. Free radical-lipid interactions and their pathological consequences. Prog Lipid Res. 1993;32(1):71-110. doi: 10.1016/0163-7827(93)90006-i. PMID: 8415800.
  71. Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005 Oct;16(10):577-86. doi: 10.1016/j.jnutbio.2005.05.013. PMID: 16111877.
  72. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711-60. doi: 10.1146/annurev.bi.52.070183.003431. PMID: 6137189.
  73. Beatty PW, Reed DJ. Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes. Arch Biochem Biophys. 1980 Oct 1;204(1):80-7. doi: 10.1016/0003-9861(80)90009-0. PMID: 7425648.
  74. Briviba K, Klotz LO, Sies H. Defenses against peroxynitrite. Nitric Oxide, Pt C. 1999;301-311.
  75. Kalyanaraman B, Karoui H, Singh RJ, Felix CC. Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols--a high resolution ESR spin-trapping study at Q-band (35 GHz). Anal Biochem. 1996 Oct 1;241(1):75-81. doi: 10.1006/abio.1996.0380. PMID: 8921168.
  76. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003 Oct 15;66(8):1499-503. doi: 10.1016/s0006-2952(03)00504-5. PMID: 14555227.
  77. Reiners JJ Jr, Mathieu P, Okafor C, Putt DA, Lash LH. Depletion of cellular glutathione by conditions used for the passaging of adherent cultured cells. Toxicol Lett. 2000 May 19;115(2):153-63. doi: 10.1016/s0378-4274(00)00189-2. PMID: 10802391.
  78. Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR, Virtamo J, Albanes D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004 Jul 1;160(1):68-76. doi: 10.1093/aje/kwh173. PMID: 15229119.
  79. Chang TN, Huang GJ, Ho YL, Huang SS, Chang HY, Chang YS. Antioxidant and antiproliferative activities of Crossostephium chinensis (L.) Makino. Am J Chin Med. 2009;37(4):797-814. doi: 10.1142/S0192415X09007259. PMID: 19655416.
  80. Fukuda H, Ebara M, Okuyama M, Sugiura N, Yoshikawa M, Saisho H, Shimizu R, Motoji N, Shigematsu A, Watayo T. Increased metabolizing activities of the tricarboxylic acid cycle and decreased drug metabolism in hepatocellular carcinoma. Carcinogenesis. 2002 Dec;23(12):2019-23. doi: 10.1093/carcin/23.12.2019. PMID: 12507924.
  81. Kim MJ, Oh SJ, Park SH, Kang HJ, Won MH, Kang TC, Hwang IK, Park JB, Kim JI, Kim J, Lee JY. Hypoxia-induced cell death of HepG2 cells involves a necrotic cell death mediated by calpain. Apoptosis. 2007 Apr;12(4):707-18. doi: 10.1007/s10495-006-0002-3. Epub 2006 Dec 30. PMID: 17195093.
  82. O’Leary KA, Day AJ, Needs PW, Mellon FA, O’Brien NM, Williamson G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol. 2003 Feb 1;65(3):479-91. doi: 10.1016/s0006-2952(02)01510-1. PMID: 12527341.
  83. van der Woude H, Boersma MG, Vervoort J, Rietjens IM. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem Res Toxicol. 2004 Nov;17(11):1520-30. doi: 10.1021/tx049826v. PMID: 15540950.
  84. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry. 1951;193(1):265-275.
  85. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996 Oct 18;87(2):171. doi: 10.1016/s0092-8674(00)81334-3. PMID: 8861900.
  86. Sakuma S, Miyoshi E, Sadatoku N, Fujita J, Negoro M, Arakawa Y, Fujimoto Y. Monochloramine produces reactive oxygen species in liver by converting xanthine dehydrogenase into xanthine oxidase. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):268-72. doi: 10.1016/j.taap.2009.06.006. Epub 2009 Jun 12. PMID: 19527742.
  87. Lewicki K, Marchand S, Matoub L, Lulek J, Coulon J, Leroy P. Development of a fluorescence-based microtiter plate method for the measurement of glutathione in yeast. Talanta. 2006 Nov 15;70(4):876-82. doi: 10.1016/j.talanta.2006.02.009. Epub 2006 Mar 24. PMID: 18970853.
  88. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26. doi: 10.1016/0003-2697(76)90326-2. PMID: 962076.
  89. Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide--characterization of morphological features of cell death. BMC Cell Biol. 2007 Mar 16;8:11. doi: 10.1186/1471-2121-8-11. PMID: 17362523; PMCID: PMC1831770.
  90. Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol. 1998 Feb;93(2):139-43. doi: 10.1111/j.1572-0241.1998.00139.x. PMID: 9468229.
  91. Hashim MJ, Fry JR. Evaluation of Direct and Indirect Antioxidant Properties of Selected Four Natural Chemical Compounds: Quercetin, Epigallocatechin-3-Gallate, Indole-3-Carbinol and Sulforaphane by DPPH Radical Scavenging Assay. J Biomed Res Environ Sci. 2020 Dec 15;1(8):389-392. doi: 10.37871/jbres1170 Article ID: JBRES1170.
  92. Kanno S, Kurauchi K, Tomizawa A, Yomogida S, Ishikawa M. Albumin modulates docosahexaenoic acid-induced cytotoxicity in human hepatocellular carcinoma cell lines. Toxicol Lett. 2011 Feb 5;200(3):154-61. doi: 10.1016/j.toxlet.2010.11.009. Epub 2010 Nov 23. PMID: 21108996.
  93. Nagata S. Apoptotic DNA fragmentation. Experimental Cell Research. 2000;256(1):12-18. doi: 10.1006/excr.2000.4834.
  94. Thornberry NA. Caspases: a decade of death research. Cell Death Differ. 1999 Nov;6(11):1023-7. doi: 10.1038/sj.cdd.4400607. PMID: 10578170.
  95. Bizat N, Hermel JM, Humbert S, Jacquard C, Créminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E. In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem. 2003 Oct 31;278(44):43245-53. doi: 10.1074/jbc.M305057200. Epub 2003 Aug 12. PMID: 12917435.
  96. Bizat N, Hermel JM, Boyer F, Jacquard C, Créminon C, Ouary S, Escartin C, Hantraye P, Kajewski S, Brouillet E. Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J Neurosci. 2003 Jun 15;23(12):5020-30. doi: 10.1523/JNEUROSCI.23-12-05020.2003. Erratum in: J Neurosci. 2003 Oct 29;23(30):9960. PMID: 12832525; PMCID: PMC6741191.
  97. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem. 2001 Mar 30;276(13):10191-8. doi: 10.1074/jbc.M007807200. Epub 2000 Dec 21. PMID: 11124942.
  98. Chua BT, Guo K, Li P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem. 2000 Feb 18;275(7):5131-5. doi: 10.1074/jbc.275.7.5131. PMID: 10671558.
  99. Lankiewicz S, Marc Luetjens C, Truc Bui N, Krohn AJ, Poppe M, Cole GM, Saido TC, Prehn JH. Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem. 2000 Jun 2;275(22):17064-71. doi: 10.1074/jbc.275.22.17064. PMID: 10828077.
  100. Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood. 1999 Sep 1;94(5):1683-92. PMID: 10477693.
  101. Maha J Hashim, Jeffrey R Fry. Influence of Extracellular Protein on the Cytoprotectiv Effects of Two Model Phytochemicals. Mol Biol. 2019;8(1). doi: 10.4172/2168 9547.1000227. https://bit.ly/3zHKgqY
  102. l’Hoste S, Chargui A, Belfodil R, Corcelle E, Duranton C, Rubera I, Poujeol C, Mograbi B, Tauc M, Poujeol P. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules. Am J Physiol Renal Physiol. 2010 Feb;298(2):F435-53. doi: 10.1152/ajprenal.00286.2009. Epub 2009 Nov 11. PMID: 19906953.
  103. Wallin B, Rosengren B, Shertzer HG, Camejo G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: its use for evaluation of antioxidants. Anal Biochem. 1993 Jan;208(1):10-5. doi: 10.1006/abio.1993.1002. PMID: 8434778.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search