Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9152967174

Research Progress in the Repair of Peripheral Nerve Injury with Adipose-Derived Stem Cell Exosomes

Medicine Group    Start Submission

Xin-Yu Ben, Hui-Hui Zheng, Ya-Ru Wang, Fang-Fang Liu, Qi-Wei Zhu, Rui Ren and Xi-Nan Yi*

Volume2-Issue7
Dates: Received: 2021-07-21 | Accepted: 2021-07-26 | Published: 2021-07-27
Pages: 618-623

Abstract

The repair of peripheral nerve injury has always been a difficult clinical problem. Although a variety of treatment methods are available in clinical practice, their efficacy is limited. In recent years, the components carried by adipose stem cell exosomes and their functions have been increasingly discovered. A large number of experiments conducted around the world have shown that adipose-derived stem cell exosomes have a positive effect on the repair of peripheral nerve injury. This article reviews recent progress toward the use of adipose-derived stem cell exosomes in the repair of injured peripheral nerves and possible future research directions involving adipose-derived stem cell exosomes.

FullText HTML FullText PDF DOI: 10.37871/jbres1287


Certificate of Publication




Copyright

© 2021 Ben XY, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ben XY, Zheng HH, Wang YR, Liu FF, Zhu QW, Ren R, Yi XN. Research Progress in the Repair of Peripheral Nerve Injury with Adipose-Derived Stem Cell Exosomes. J Biomed Res Environ Sci. 2021 July 27; 2(7): 618-623. doi: 10.37871/jbres1287, Article ID: JBRES1287, Available at: https://www.jelsciences.com/articles/jbres1287.pdf


Subject area(s)

References


  1. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998 Jul;45(1):116-22. doi: 10.1097/00005373-199807000-00025. PMID: 9680023.
  2. Sachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014 Feb;133(2):313-319. doi: 10.1097/01.prs.0000436856.55398.0f. PMID: 24150118.
  3. Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008 Sep;119(9):1951-65. doi: 10.1016/j.clinph.2008.03.018. Epub 2008 May 14. PMID: 18482862.
  4. Winfree CJ. Peripheral nerve injury evaluation and management. Curr Surg. 2005 Sep-Oct;62(5):469-76. doi: 10.1016/j.cursur.2005.03.008. PMID: 16125601.
  5. Zheng MX, Hua XY, Feng JT, Li T, Lu YC, Shen YD, Cao XH, Zhao NQ, Lyu JY, Xu JG, Gu YD, Xu WD. Trial of Contralateral Seventh Cervical Nerve Transfer for Spastic Arm Paralysis. N Engl J Med. 2018 Jan 4;378(1):22-34. doi: 10.1056/NEJMoa1615208. Epub 2017 Dec 20. PMID: 29262271.
  6. Wang X, Ma S, Wu H, Shen X, Xu S, Guo X, Bolick ML, Wu S, Wang F. Macrophage migration inhibitory factor mediates peripheral nerve injury-induced hypersensitivity by curbing dopaminergic descending inhibition. Exp Mol Med. 2018 Feb 16;50(2):e445. doi: 10.1038/emm.2017.271. PMID: 29504609; PMCID: PMC5903823.
  7. Houdek MT, Shin AY. Management and complications of traumatic peripheral nerve injuries. Hand Clin. 2015 May;31(2):151-63. doi: 10.1016/j.hcl.2015.01.007. Epub 2015 Feb 28. PMID: 25934193.
  8. Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci. 2016 Aug;44(4):2114-9. doi: 10.1111/ejn.13275. Epub 2016 Jun 4. PMID: 27177616.
  9. Lee M, Ban JJ, Kim KY, Jeon GS, Im W, Sung JJ, Kim M. Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun. 2016 Oct 21;479(3):434-439. doi: 10.1016/j.bbrc.2016.09.069. Epub 2016 Sep 15. PMID: 27641665.
  10. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002 Aug;2(8):569-79. doi: 10.1038/nri855. PMID: 12154376.
  11. Yeon JH, Jeong HE, Seo H, Cho S, Kim K, Na D, Chung S, Park J, Choi N, Kang JY. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater. 2018 Aug;76:146-153. doi: 10.1016/j.actbio.2018.07.001. Epub 2018 Jul 4. PMID: 30078422.
  12. Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair. 2018 Sep;32(9):765-776. doi: 10.1177/1545968318798955. PMID: 30223738; PMCID: PMC6146407.
  13. Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981 Jul 6;645(1):63-70. doi: 10.1016/0005-2736(81)90512-5. PMID: 6266476.
  14. Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 2015;40:82-88. doi: 10.1016/j.semcdb.2015.03.001
  15. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. doi: 10.1038/ncb1596. Epub 2007 May 7. PMID: 17486113.
  16. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018 Apr;19(4):213-228. doi: 10.1038/nrm.2017.125. Epub 2018 Jan 17. PMID: 29339798.
  17. Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in Pathogen Infections: A Bridge to Deliver Molecules and Link Functions. Front Immunol. 2018 Feb 12;9:90. doi: 10.3389/fimmu.2018.00090. PMID: 29483904; PMCID: PMC5816030.
  18. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015 Jul 9;523(7559):177-82. doi: 10.1038/nature14581. Epub 2015 Jun 24. PMID: 26106858; PMCID: PMC4825698.
  19. Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. 2017 Apr 27;129(17):2429-2436. doi: 10.1182/blood-2016-09-742296. Epub 2017 Feb 17. PMID: 28213378; PMCID: PMC5409448.
  20. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009 Aug;21(4):575-81. doi: 10.1016/j.ceb.2009.03.007. Epub 2009 May 11. PMID: 19442504.
  21. Yang JK, Song J, Huo HR, Zhao YL, Zhang GY, Zhao ZM, Sun GZ, Jiao BH. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme. Ther Adv Med Oncol. 2017 Dec;9(12):741-754. doi: 10.1177/1758834017737471. Epub 2017 Nov 6. PMID: 29449895; PMCID: PMC5808838.
  22. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr;7(2):211-28. doi: 10.1089/107632701300062859. PMID: 11304456.
  23. De Ugarte DA, Ashjian PH, Elbarbary A, Hedrick MH. Future of fat as raw material for tissue regeneration. Ann Plast Surg. 2003 Feb;50(2):215-9. doi: 10.1097/01.SAP.0000029661.38066.15. PMID: 12567065.
  24. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015 Jul 1;6(1):127. doi: 10.1186/s13287-015-0116-z. PMID: 26129847; PMCID: PMC4529699.
  25. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience. 2016 Apr 21;320:129-39. doi: 10.1016/j.neuroscience.2016.01.061. Epub 2016 Feb 3. PMID: 26851773.
  26. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010 May;4(3):214-22. doi: 10.1016/j.scr.2009.12.003. Epub 2010 Jan 4. PMID: 20138817.
  27. Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014 Jun 1;23(11):1233-44. doi: 10.1089/scd.2013.0479. Epub 2014 Feb 10. PMID: 24367916.
  28. Qian DX, Zhang HT, Ma X, Jiang XD, Xu RX. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res. 2010 Apr;35(4):572-9. doi: 10.1007/s11064-009-0101-y. Epub 2009 Dec 4. PMID: 19960248.
  29. Allison DJ, Gabriel DA, Klentrou P, Josse AR, Ditor DS. The Influence of Chronic Inflammation on Peripheral Motor Nerve Conduction Following Spinal Cord Injury: A Randomized Clinical Trial. Top Spinal Cord Inj Rehabil. 2017 Fall;23(4):377-385. doi: 10.1310/sci16-00045. PMID: 29339913; PMCID: PMC5667434.
  30. Bruin JE, Saber N, Braun N, Fox JK, Mojibian M, Asadi A, Drohan C, O’Dwyer S, Rosman-Balzer DS, Swiss VA, Rezania A, Kieffer TJ. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Reports. 2015 Apr 14;4(4):605-20. doi: 10.1016/j.stemcr.2015.02.011. Epub 2015 Mar 19. PMID: 25801507; PMCID: PMC4400611.
  31. Morigi M, De Coppi P. Cell therapy for kidney injury: different options and mechanisms--mesenchymal and amniotic fluid stem cells. Nephron Exp Nephrol. 2014;126(2):59. doi: 10.1159/000360667. Epub 2014 May 19. PMID: 24854642.
  32. Han YD, Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun. 2018 Feb 26;497(1):305-312. doi: 10.1016/j.bbrc.2018.02.076. Epub 2018 Feb 8. PMID: 29428734.
  33. Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z, Wang X, Luo L, Han F, Zhang J, Han S, Cai W, Su L, Tao K, Shi J, Hu D. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018 Sep 15;370(2):333-342. doi: 10.1016/j.yexcr.2018.06.035. Epub 2018 Jun 28. PMID: 29964051.
  34. Alipoor SD, Tabarsi P, Varahram M, Movassaghi M, Dizaji MK, Folkerts G, Garssen J, Adcock IM, Mortaz E. Serum Exosomal miRNAs Are Associated with Active Pulmonary Tuberculosis. Dis Markers. 2019 Feb 11;2019:1907426. doi: 10.1155/2019/1907426. PMID: 30886653; PMCID: PMC6388314.
  35. Kanaoka R, Iinuma H, Dejima H, Sakai T, Uehara H, Matsutani N, Kawamura M. Usefulness of Plasma Exosomal MicroRNA-451a as a Noninvasive Biomarker for Early Prediction of Recurrence and Prognosis of Non-Small Cell Lung Cancer. Oncology. 2018;94(5):311-323. doi: 10.1159/000487006. Epub 2018 Mar 13. PMID: 29533963.
  36. Sonoda H, Lee BR, Park KH, Nihalani D, Yoon JH, Ikeda M, Kwon SH. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep. 2019 Mar 18;9(1):4692. doi: 10.1038/s41598-019-40747-8. PMID: 30886169; PMCID: PMC6423131.
  37. Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci. 2017 Mar 15;130(6):1158-1168. doi: 10.1242/jcs.197764. Epub 2017 Feb 6. PMID: 28167681.
  38. Ni J, Li H, Zhou Y, Gu B, Xu Y, Fu Q, Peng X, Cao N, Fu Q, Jin M, Sun G, Wang J, Jin Y, Liu F. Therapeutic Potential of Human Adipose-Derived Stem Cell Exosomes in Stress Urinary Incontinence - An in Vitro and in Vivo Study. Cell Physiol Biochem. 2018;48(4):1710-1722. doi: 10.1159/000492298. Epub 2018 Aug 3. PMID: 30077997.
  39. Costa HJ, Bento RF, Salomone R, Azzi-Nogueira D, Zanatta DB, Paulino Costa M, da Silva CF, Strauss BE, Haddad LA. Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration. Brain Res. 2013 May 13;1510:10-21. doi: 10.1016/j.brainres.2013.03.025. Epub 2013 Mar 28. PMID: 23542586.
  40. Zheng L, Cui HF. Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration. J Mater Sci Mater Med. 2010 May;21(5):1713-20. doi: 10.1007/s10856-010-4003-y. Epub 2010 Jan 26. PMID: 20101439.
  41. Zheng L, Cui HF. Enhancement of nerve regeneration along a chitosan conduit combined with bone marrow mesenchymal stem cells. J Mater Sci Mater Med. 2012 Sep;23(9):2291-302. doi: 10.1007/s10856-012-4694-3. Epub 2012 Jun 3. PMID: 22661248.
  42. Ghoreishian M, Rezaei M, Beni BH, Javanmard SH, Attar BM, Zalzali H. Facial nerve repair with Gore-Tex tube and adipose-derived stem cells: an animal study in dogs. J Oral Maxillofac Surg. 2013 Mar;71(3):577-87. doi: 10.1016/j.joms.2012.05.025. Epub 2012 Aug 4. PMID: 22868036.
  43. Orbay H, Uysal AC, Hyakusoku H, Mizuno H. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg. 2012 May;65(5):657-64. doi: 10.1016/j.bjps.2011.11.035. Epub 2011 Dec 3. PMID: 22137687.
  44. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, Constantin G, Bedogni G, Bedogni A, Bonetti B. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A. 2012 Jun;18(11-12):1264-72. doi: 10.1089/ten.TEA.2011.0491. Epub 2012 Apr 3. PMID: 22332955.
  45. Allbright KO, Bliley JM, Havis E, Kim DY, Dibernardo GA, Grybowski D, Waldner M, James IB, Sivak WN, Rubin JP, Marra KG. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle Nerve. 2018 Aug;58(2):251-260. doi: 10.1002/mus.26094. Epub 2018 Feb 22. PMID: 29406624.
  46. Li M, Lei H, Xu Y, Li H, Yang B, Yu C, Yuan Y, Fang D, Xin Z, Guan R. Exosomes derived from mesenchymal stem cells exert therapeutic effect in a rat model of cavernous nerves injury. Andrology. 2018 Nov;6(6):927-935. doi: 10.1111/andr.12519. Epub 2018 Jul 16. PMID: 30009463.
  47. Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res. 2018 Jun;196:1-16. doi: 10.1016/j.trsl.2018.01.005. Epub 2018 Jan 31. PMID: 29432720.
  48. Zhan C, Ma CB, Yuan HM, Cao BY, Zhu JJ. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair. Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):343-8. doi: 10.1016/j.bbrc.2015.10.097. Epub 2015 Oct 22. PMID: 26499078.
  49. Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013 Nov;61(11):1795-806. doi: 10.1002/glia.22558. Epub 2013 Aug 30. PMID: 24038411.
  50. Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019 Aug 7;10(1):242. doi: 10.1186/s13287-019-1358-y. PMID: 31391108; PMCID: PMC6686455.
  51. Yin G, Liu C, Lin Y, Xie Z, Hou C, Lin H. [Effect of exosomes from adipose-derived stem cells on peripheral nerve regeneration]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 Dec 15;32(12):1592-1596. Chinese. doi: 10.7507/1002-1892.201707051. PMID: 30569689.
  52. Ren ZW, Zhou JG, Xiong ZK, Zhu FZ, Guo XD. Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):52-60. doi: 10.26355/eurrev_201901_16747. PMID: 30657546.
  53. Wei JJ, Chen YF, Xue CL, Ma BT, Shen YM, Guan J, Bao XJ, Wu H, Han Q, Wang RZ, Zhao CH. Protection of Nerve Injury with Exosome Extracted from Mesenchymal Stem Cell. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016 Feb;38(1):33-6. doi: 10.3881/j.issn.1000-503X.2016.01.006. PMID: 26956853.
  54. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010 Sep;63(9):1544-52. doi: 10.1016/j.bjps.2009.09.012. Epub 2009 Oct 13. PMID: 19828391.
  55. Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, Wang X. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res. 2018 Oct 1;371(1):269-277. doi: 10.1016/j.yexcr.2018.08.021. Epub 2018 Aug 22. PMID: 30142325.
  56. Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, Cai L, Hu R, Xu L, Li L. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cell Physiol Biochem. 2018;47(2):864-878. doi: 10.1159/000490078. Epub 2018 May 23. PMID: 29807362.
  57. Wang H, Zhu H, Guo Q, Qian T, Zhang P, Li S, Xue C, Gu X. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection. Front Cell Neurosci. 2017 Oct 11;11:323. doi: 10.3389/fncel.2017.00323. PMID: 29085283; PMCID: PMC5649188.
  58. Liu X, Li Q, Niu X, Hu B, Chen S, Song W, Ding J, Zhang C, Wang Y. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. Int J Biol Sci. 2017 Feb 6;13(2):232-244. doi: 10.7150/ijbs.16951. PMID: 28255275; PMCID: PMC5332877.
  59. Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med. 2016 Apr;5(4):440-50. doi: 10.5966/sctm.2015-0177. Epub 2016 Mar 1. PMID: 26933040; PMCID: PMC4798737.
  60. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016 Jun 1;129(11):2182-9. doi: 10.1242/jcs.170373. PMID: 27252357.
  61. Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia. 2015 Aug;63(8):1376-93. doi: 10.1002/glia.22852. Epub 2015 Apr 29. PMID: 25921593; PMCID: PMC4470834.
  62. Lopez-Leal R, Court FA. Schwann Cell Exosomes Mediate Neuron-Glia Communication and Enhance Axonal Regeneration. Cell Mol Neurobiol. 2016 Apr;36(3):429-36. doi: 10.1007/s10571-015-0314-3. Epub 2016 Mar 18. PMID: 26993502.
  63. Carr MJ, Johnston AP. Schwann cells as drivers of tissue repair and regeneration. Curr Opin Neurobiol. 2017 Dec;47:52-57. doi: 10.1016/j.conb.2017.09.003. Epub 2017 Sep 28. PMID: 28963968.
  64. Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol. 2019 Mar;56(3):1812-1824. doi: 10.1007/s12035-018-1172-z. Epub 2018 Jun 21. PMID: 29931510; PMCID: PMC6394792.
  65. Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R, Jessen KR, Aitman TJ. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury. Cell Rep. 2017 Sep 12;20(11):2719-2734. doi: 10.1016/j.celrep.2017.08.064. PMID: 28903050; PMCID: PMC5608958.
  66. Chang LW, Viader A, Varghese N, Payton JE, Milbrandt J, Nagarajan R. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury. BMC Genomics. 2013 Feb 6;14:84. doi: 10.1186/1471-2164-14-84. PMID: 23387820; PMCID: PMC3599357.
  67. Yue Y, Yang X, Zhang L, Xiao X, Nabar NR, Lin Y, Hao L, Zhang D, Huo J, Li J, Cai X, Wang M. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells. Cell Prolif. 2016 Dec;49(6):720-728. doi: 10.1111/cpr.12298. Epub 2016 Sep 14. PMID: 27625295; PMCID: PMC6496622.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert