Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9152965145

A Cell-Based Assay for Antioxidant Behaviour of Phytochemicals: Influence of Exposure Time and Presence of Serum

General Science    Start Submission

Maha J Hashim* and Jeffrey R Fry

Volume2-Issue7
Dates: Received: 2021-07-22 | Accepted: 2021-07-26 | Published: 2021-07-27
Pages: 610-617

Abstract

There is considerable interest in the ability of plant-derived antioxidants to protect against oxidative damage associated with disease or exposure to toxic agents. In this study, the cytoprotection effect of the direct antioxidants Quercetin (Q) and Epigallocatechin-3-Gallate (EGCG) and the indirect antioxidants, Sulforaphane (SFN) and Indole-3-Carbinol (I3C) was assessed in a cellular protection assay. This assay involved two cytoprotection patterns: (a) exposure to phytochemical for 20 hours followed by 5-hour exposure to t-Butylhydroperoxide (t-BHP); (b) simultaneous exposure to phytochemicals and t-BHP for 5 hours. HepG2 cells were cultured to a confluent monolayer and exposed to phytochemical +/- t-BHP in serum-free medium or serum-containing medium at high [10%(v/v)] or low [2%(v/v)] levels of foetal bovine serum, after which cell damage mediated by oxidant stress was assessed by uptake of neutral red. Results showed that Q, EGCG and, I3C were effective while SFN was inactive and toxic to the cells by itself at high concentration during long incubation. On the other hand, a short time of incubation with SFN displayed identical results to prolonged exposure. However, I3C was devoid of protection activity. Moreover, results showed that serum has a major impact on antioxidant activity.

FullText HTML FullText PDF DOI: 10.37871/jbres1286


Certificate of Publication




Copyright

© 2021 Hashim MJ, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Hashim MJ, Fry JR. A Cell-Based Assay for Antioxidant Behaviour of Phytochemicals: Influence of Exposure Time and Presence of Serum. J Biomed Res Environ Sci. 2021 July 27; 2(7): 610-617. doi: 10.37871/jbres1286, Article ID: JBRES1286, Available at: https://www.jelsciences.com/articles/jbres1286.pdf


Subject area(s)

References


  1. Stanner SA, Hughes J, Kelly CN, Buttriss J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr. 2004 May;7(3):407-22. doi: 10.1079/phn2003543. PMID: 15153272.
  2. Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T, Chirlaque MD, Dorronsoro M, Jakszyn P, Larrañaga N, Martínez C, Navarro C, Quirós JR, Sánchez MJ, Tormo MJ, González CA. Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr. 2007 Jun;85(6):1634-42. doi: 10.1093/ajcn/85.6.1634. Erratum in: Am J Clin Nutr. 2008 Oct;88(4):1181. PMID: 17556703.
  3. Lopaczynski W, Zeisel SH. Antioxidants, programmed cell death, and cancer. Nutrition Research. 2001;21:295-307. doi: 10.1016/S0271- 5317(00)00288-8.
  4. Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, de Oliveira Costa Dias G, Morel AF, Nogueira CW, Rocha JB. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006 Aug 30;1107(1):192-8. doi: 10.1016/j.brainres.2006.05.084. Epub 2006 Jul 7. PMID: 16828712.
  5. Wagner C, Vargas AP, Roos DH, Morel AF, Farina M, Nogueira CW, Aschner M, Rocha JB. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Arch Toxicol. 2010 Feb;84(2):89-97. doi: 10.1007/s00204-009-0482-3. Epub 2009 Nov 10. PMID: 19902180.
  6. Maha J Hashim and Jeffrey R Fry. Evaluation of Direct and Indirect Antioxidant Properties of Selected Four Natural Chemical Compounds: Quercetin, Epigallocatechin-3-Gallate, Indole-3-Carbinol and Sulforaphane by DPPH Radical Scavenging Assay. J Biomed Res Environ Sci. 2020 Dec 15;1(8):389-392. doi: 10.37871/jbres1170 Article ID: JBRES1170. https://bit.ly/3zw2Dia
  7. Hertog MGL, Hollman PCH, Katan MB. Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. Journal of Agricultural and Food Chemistry. 1992;40(12):2379-2383. https://bit.ly/3kRH87w
  8. Alía M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol. 2006 Apr 15;212(2):110-8. doi: 10.1016/j.taap.2005.07.014. Epub 2005 Aug 29. PMID: 16126241.
  9. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995 Feb 27;155(4):381-6. Erratum in: Arch Intern Med 1995 Jun 12;155(11):1184. PMID: 7848021.
  10. Kim GN, Jang HD. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Ann N Y Acad Sci. 2009 Aug;1171:530-7. doi: 10.1111/j.1749-6632.2009.04690.x. PMID: 19723100.
  11. Hertog MG, Hollman PC. Potential health effects of the dietary flavonol quercetin. Eur J Clin Nutr. 1996 Feb;50(2):63-71. PMID: 8641249.
  12. Loke WM, Proudfoot JM, Stewart S, McKinley AJ, Needs PW, Kroon PA, Hodgson JM, Croft KD. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem Pharmacol. 2008 Mar 1;75(5):1045-53. doi: 10.1016/j.bcp.2007.11.002. Epub 2007 Nov 12. PMID: 18096136.
  13. Shimoda K, Kobayashi T, Akagi M, Hamada H, Hamada H. Synthesis of oligosaccharides of genistein and quercetin as potential anti-inflammatory agents. Chemistry Letters. 2008;37:876-877. doi:10.1246/Cl.2008.876. https://bit.ly/3y7VV1t
  14. Williamson G, Plumb GW, Uda Y, Price KR, Rhodes MJ. Dietary quercetin glycosides: antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis. 1996 Nov;17(11):2385-7. doi: 10.1093/carcin/17.11.2385. PMID: 8968052.
  15. Fan D, Zhou X, Zhao C, Chen H, Zhao Y, Gong X. Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia. 2011 Sep;82(6):805-10. doi: 10.1016/j.fitote.2011.04.007. Epub 2011 May 5. PMID: 21570451.
  16. Hu C, Kitts DD. Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro. Mol Cell Biochem. 2001 Feb;218(1-2):147-55. doi: 10.1023/a:1007220928446. PMID: 11330830.
  17. Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys. 2003 Feb 1;410(1):177-85. doi: 10.1016/s0003-9861(02)00668-9. PMID: 12559991.
  18. Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003 Jul 31;22(31):4851-9. doi: 10.1038/sj.onc.1206708. PMID: 12894226.
  19. Jung YD, Ellis LM. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol. 2001 Dec;82(6):309-16. doi: 10.1046/j.1365-2613.2001.00205.x. PMID: 11846837; PMCID: PMC2517785.
  20. Zhu M, Gong Y, Yang Z, Ge G, Han C, Chen J. Green tea and its major components ameliorate immune dysfunction in mice bearing Lewis lung carcinoma and treated with the carcinogen NNK. Nutr Cancer. 1999;35(1):64-72. doi: 10.1207/S1532791464-72. PMID: 10624708.
  21. Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH, Youn JI, Eun HC. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J. 2003 Oct;17(13):1913-5. doi: 10.1096/fj.02-0914fje. Epub 2003 Aug 1. PMID: 12897059.
  22. Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene. 2004 Apr 1;23(14):2507-22. doi: 10.1038/sj.onc.1207353. PMID: 14676829.
  23. Raza H, John A. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol. 2005 Sep 15;207(3):212-20. doi: 10.1016/j.taap.2005.01.004. PMID: 16129114.
  24. Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Grimminger D, Howell P, Mayeaux EJ, Tucker A, Turbat-Herrera EA, Mathis JM. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol. 2000 Aug;78(2):123-9. doi: 10.1006/gyno.2000.5847. PMID: 10926790.
  25. Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact. 1997 Feb 28;103(2):79-129. doi: 10.1016/s0009-2797(96)03745-3. PMID: 9055870.
  26. Bradfield CA, Bjeldanes LF. Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolase activities in the rat. Food Chem Toxicol. 1984 Dec;22(12):977-82. doi: 10.1016/0278-6915(84)90147-9. PMID: 6334634.
  27. Loub WD, Wattenberg LW, Davis DW. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst. 1975 Apr;54(4):985-8. PMID: 1127728.
  28. Yanaka A, Zhang S, Tauchi M, Suzuki H, Shibahara T, Matsui H, Nakahara A, Tanaka N, Yamamoto M. Role of the nrf-2 gene in protection and repair of gastric mucosa against oxidative stress. Inflammopharmacology. 2005;13(1-3):83-90. doi: 10.1163/156856005774423863. PMID: 16259730.
  29. Choi WY, Choi BT, Lee WH, Choi YH. Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells. Biomed Pharmacother. 2008 Nov;62(9):637-44. doi: 10.1016/j.biopha.2008.01.001. Epub 2008 Feb 11. PMID: 18313257.
  30. Yeh CT, Yen GC. Effect of sulforaphane on metallothionein expression and induction of apoptosis in human hepatoma HepG2 cells. Carcinogenesis. 2005 Dec;26(12):2138-48. doi: 10.1093/carcin/bgi185. Epub 2005 Jul 20. Retraction in: Carcinogenesis. 2014 Jan;35(1):247. PMID: 16033772.
  31. Trnkova L, Bousova I, Stankova V, Drsata J. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques. Journal of Molecular Structure. 2011;985:243-250. doi: 10.1016/j.molstruc.2010.11.001. https://bit.ly/3iPDgB7
  32. Smith EB, Staples EM. Plasma protein concentrations in interstitial fluid from human aortas. Proc R Soc Lond B Biol Sci. 1982 Dec 22;217(1206):59-75. doi: 10.1098/rspb.1982.0094. PMID: 6187014.
  33. Maha J Hashim, Jeffrey R Fry. Influence of Extracellular Protein on the Cytoprotective Effects of Two Model Phytochemicals. Mol Biol. 2019;8(1). doi: 10.4172/2168- 9547.1000227.
  34. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125-31. doi: 10.1038/nprot.2008.75. PMID: 18600217.
  35. Kanno S, Kurauchi K, Tomizawa A, Yomogida S, Ishikawa M. Albumin modulates docosahexaenoic acid-induced cytotoxicity in human hepatocellular carcinoma cell lines. Toxicol Lett. 2011 Feb 5;200(3):154-61. doi: 10.1016/j.toxlet.2010.11.009. Epub 2010 Nov 23. PMID: 21108996.
  36. Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr. 2006 Feb;45(1):19-28. doi: 10.1007/s00394-005-0558-7. Epub 2005 Mar 25. PMID: 15782287.
  37. Gulden M, Dierickx P, Seibert H. Validation of a prediction model for estimating serum concentrations of chemicals which are equivalent to toxic concentrations in vitro. Toxicology in Vitro. 2006;20(7):1114-1124. doi: 10.1016/j.tiv.2006.02.002
  38. Rothschild MA, Oratz M, Schreiber SS. Serum-Albumin. Hepatology. 1988;8(2):385-401. doi: 10.1002/hep.1840080234
  39. Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR. Organic Hydroperoxide-Induced Lipid-Peroxidation and Cell-Death in Isolated Hepatocytes. Toxicology and Applied Pharmacology. 1985;78(3):473-483 doi: 10.1016/0041-008x(85)90255-8
  40. Smith EB, Staples EM. Plasma-Protein Concentrations in Interstitial Fluid from Human Aortas. Proceedings of the Royal Society B-Biological Sciences. 1982; 217(1206):59-75 doi: 10.1098/rspb.1982.0094.
  41. Rutili G, Arfors KE. Protein Concentration in Interstitial and Lymphatic Fluids from Subcutaneous Tissue. Acta PhysiologicaScandinavica. 1977;99(1):1-8 doi: 10.1111/j.1748-1716.1977.tb10345.x.
  42. Aukland K, Fadnes H.O. Protein Concentration of Interstitial Fluid Collected from Rat Skin by a Wick Method. Acta Physiologica Scandinavica. 1973. doi:10.1111/j.1748-1716.1973.tb05464.x.
  43. Chiodo SG, Leopoldini M, Russo N, Toscano M. The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Physical Chemistry Chemical Physics. 2010;12(27):7662-7670 doi:10.1039/B924521a.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert