Covid-19 Research

Original Article

OCLC Number/Unique Identifier: 9152969214

Assessment of Nanosilver Hemocompatibility in Prehypertensive Salt-Induced Animal Model

Medicine Group    Start Submission

Ogechukwu K Uche*, Esiri F Ohiambe and Fabian C Amechina

Volume2-Issue7
Dates: Received: 2021-06-26 | Accepted: 2021-07-20 | Published: 2021-07-21
Pages: 567-573

Abstract

Aim: There are Conflicting reports on safety profile of nanoparticles on biological cells. This study evaluated the impact of nanosilver on hemocompatibility on salt-loaded rats.

Materials and Methods: Sprague-Dawley rats [(inbred) (120-140 g)] randomly divided into of 4 groups, (n = 6) were studied. Group 1(control) received normal rat chow and tap water, Group 2 received rat chow containing 8% NaCl [(salt-loaded rats (SLRs)]. Group 3 received rat chow + Nanosilver Solution (NS) 0.18 mL 10 ppm/kg/day. Group 4 comprised SLRs + NS. After 6 weeks oral gavage treatments, measurements of Blood pressure (Bp) and Heart Rate (HR) were by pressure transducer via cannulation of left common carotid artery following anaesthesia with urethane. HR was computed by the number of arterial pulse per 60 seconds. 5 ml of blood for WBC, PLATELETS, RBC, PCV, HB, MCH, MCHC and MCV analyses using automated haematology analyser and Osmotic fragility reactivity with standard spectrophotometer at 540 nm wavelength.

Results: Exposure of nanosilver to normotensive rats resulted in significantly lower RBC level compared with control, whereas RBC level in Salt-Loaded Co-Treated Nanosilver (SCNS) was comparable with the SLRs. The tenet was the same for HB, PCV, MCH and MCHC. Nanosilver induced leukopenia in normotensive compared with control and prevented WBC elevation in SCNS. Platelets significantly increased in Nanosilver-Treated Normotensive Rats (NTNRs) compared with control and decreased in SCNS. Osmotic burst resistance increased in NTNRs and decreased in cells from treated groups.

Conclusion: Chronic exposure of nanosilver to salt loaded rats alters haematological parameters which may worsen circulatory function and activate risk factors of cardiovascular disorders.

FullText HTML FullText PDF DOI: 10.37871/jbres1278


Certificate of Publication




Copyright

© 2021 Uche OK, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Uche OK, Ohiambe EF, Amechina FC. Assessment of Nanosilver Hemocompatibility in Prehypertensive Salt-Induced Animal Model. J Biomed Res Environ Sci. 2021 July 21; 2(7): 567-273. doi: 10.37871/jbres1278, Article ID: JBRES1278, Available at: https://www.jelsciences.com/articles/jbres1278.pdf


Subject area(s)

References


  1. Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M, Mitragotri S, Muzykantov V. The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells. PLoS One. 2016 Mar 22;11(3):e0152074. doi: 10.1371/journal.pone.0152074. PMID: 27003833; PMCID: PMC4803339.
  2. de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells. 2019 Oct 7;8(10):1209. doi: 10.3390/cells8101209. PMID: 31591302; PMCID: PMC6829615.
  3. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK. Hypertension. Nat Rev Dis Primers. 2018 Mar 22;4:18014. doi: 10.1038/nrdp.2018.14. PMID: 29565029; PMCID: PMC6477925.
  4. Chen AX, Haas AV, Williams GH, Vaidya A. Dietary sodium intake and cortisol measurements. Clin Endocrinol (Oxf). 2020 Nov;93(5):539-545. doi: 10.1111/cen.14262. Epub 2020 Jun 24. PMID: 32511774; PMCID: PMC7859973.
  5. Dong OM. Excessive dietary sodium intake and elevated blood pressure: a review of current prevention and management strategies and the emerging role of pharmaconutrigenetics. BMJ Nutr Prev Health. 2018 Sep 19;1(1):7-16. doi: 10.1136/bmjnph-2018-000004. PMID: 33235949; PMCID: PMC7678480.
  6. Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium Intake and Hypertension. Nutrients. 2019 Aug 21;11(9):1970. doi: 10.3390/nu11091970. PMID: 31438636; PMCID: PMC6770596.
  7. Shenouda N, Ramick MG, Lennon SL, Farquhar WB, Edwards DG. High dietary sodium augments vascular tone and attenuates low-flow mediated constriction in salt-resistant adults. Eur J Appl Physiol. 2020 Jun;120(6):1383-1389. doi: 10.1007/s00421-020-04370-0. Epub 2020 Apr 18. PMID: 32306153; PMCID: PMC7315828.
  8. Smiljanec K, Mbakwe A, Ramos Gonzalez M, Farquhar WB, Lennon SL. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients. 2020 Apr 25;12(5):1206. doi: 10.3390/nu12051206. PMID: 32344796; PMCID: PMC7281996.
  9. Adejare AA, Sofola OA. Amlodipine Corrects Changes in Blood Pressure and Baroreceptor Reflex Sensitivity in Sprague Dawley Rats Fed a High Salt Diet. Niger J Physiol Sci. 2017 Jun 30;32(1):63-67. PMID: 29134979.
  10. Laloy J, Minet V, Alpan L, Mullier F, Beken S, Toussaint O, Lucas S, Dogné JM. Impact of Silver Nanoparticles on Haemolysis, Platelet Function and Coagulation. Nanobiomedicine (Rij). 2014 Jan 1;1:4. doi: 10.5772/59346. PMID: 30023015; PMCID: PMC6029236.
  11. Walski T, Chludzińska L, Komorowska M, Witkiewicz W. Individual osmotic fragility distribution: a new parameter for determination of the osmotic properties of human red blood cells. Biomed Res Int. 2014;2014:162102. doi: 10.1155/2014/162102. Epub 2014 Jan 2. PMID: 24527436; PMCID: PMC3909971.
  12. Pieszka M, Bederska-Łojewska D, Szczurek P, Pieszka M. The Membrane Interactions of Nano-Silica and Its Potential Application in Animal Nutrition. Animals (Basel). 2019 Nov 28;9(12):1041. doi: 10.3390/ani9121041. PMID: 31795229; PMCID: PMC6940791.
  13. Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials (Basel). 2018 Aug 31;8(9):681. doi: 10.3390/nano8090681. PMID: 30200373; PMCID: PMC6163202.
  14. Rodriguez-Garraus A, Azqueta A, Vettorazzi A, López de Cerain A. Genotoxicity of Silver Nanoparticles. Nanomaterials (Basel). 2020 Jan 31;10(2):251. doi: 10.3390/nano10020251. PMID: 32023837; PMCID: PMC7075128.
  15. Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials (Basel). 2015 Jun 30;5(3):1163-1180. doi: 10.3390/nano5031163. PMID: 28347058; PMCID: PMC5304638.
  16. Ash GI, Kim D, Choudhury M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol Metab. 2019 Jun;30(6):369-383. doi: 10.1016/j.tem.2019.04.004. Epub 2019 May 21. PMID: 31126754; PMCID: PMC6716370.
  17. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014 Mar;22(1):116-127. doi: 10.1016/j.jfda.2014.01.010. Epub 2014 Feb 7. PMID: 24673909; PMCID: PMC4281024.
  18. Vali S, Mohammadi G, Tavabe KR, Moghadas F, Naserabad SS. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol Environ Saf. 2020 May;194:110353. doi: 10.1016/j.ecoenv.2020.110353. Epub 2020 Mar 5. PMID: 32146193.
  19. Bachler G, von Goetz N, Hungerbühler K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine. 2013;8:3365-82. doi: 10.2147/IJN.S46624. Epub 2013 Sep 2. PMID: 24039420; PMCID: PMC3771750.
  20. Holland NA, Becak DP, Shannahan JH, Brown JM, Carratt SA, Winkle L, Pinkerton KE, Wang CM, Munusamy P, Baer DR, Sumner SJ, Fennell TR, Lust RM, Wingard CJ. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver. J Nanomed Nanotechnol. 2015 Nov;6(Suppl 6):006. doi: 10.4172/2157-7439.S6-006. Epub 2015 Oct 1. PMID: 26966636; PMCID: PMC4780684.
  21. Uche OK, Ehanire VO. Influence of Nanosilver on Endothelial Function and Vascular Reactivity of Isolated Rabbit Carotid Artery. Niger J Physiol Sci. 2018 Dec 30;33(2):139-144. PMID: 30837766.
  22. Walkowska A, Kuczeriszka M, Sadowski J, Olszyñski KH, Dobrowolski L, Červenka L, Hammock BD, Kompanowska-Jezierska E. High salt intake increases blood pressure in normal rats: putative role of 20-HETE and no evidence on changes in renal vascular reactivity. Kidney Blood Press Res. 2015;40(3):323-34. doi: 10.1159/000368508. Epub 2015 May 31. PMID: 26067851; PMCID: PMC4583220.
  23. Mojiminiyi FB, Audu Z, Etuk EU, Ajagbonna OP. Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa. Niger J Physiol Sci. 2012 Dec 18;27(2):195-200. PMID: 23652235.
  24. Dacie JV, Lewis SM. Practical Haematology. 6th Edition. London: Churchill Livingstone; 1984. P. 7-49. https://bit.ly/3x1W8Cl
  25. Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. 2015 Mar 16;28(3):501-9. doi: 10.1021/tx500479m. Epub 2015 Feb 2. PMID: 25602487.
  26. Pan DC, Myerson JW, Brenner JS, Patel PN, Anselmo AC, Mitragotri S, Muzykantov V. Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells. Sci Rep. 2018 Jan 25;8(1):1615. doi: 10.1038/s41598-018-19897-8. PMID: 29371620; PMCID: PMC5785499.
  27. Shaluei F, Hedayati A, Jahanbakhshi A, Kolangi H, Fotovat M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum Exp Toxicol. 2013 Dec;32(12):1270-7. doi: 10.1177/0960327113485258. Epub 2013 Apr 30. PMID: 23632006.
  28. Reddy SJ and Vineela D. Effects of silver nanoparticles on biochemical indices of the liver of catla. Journal of international academic research for multidisciplinary. 2016;4(1):140-152.
  29. Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol. 2018 Jul 16;6:99. doi: 10.3389/fbioe.2018.00099. PMID: 30062094; PMCID: PMC6054932.
  30. Kettler K, Giannakou C, de Jong WH, Hendriks AJ, Krystek P. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. J Nanopart Res. 2016;18(9):286. doi: 10.1007/s11051-016-3595-7. Epub 2016 Sep 22. PMID: 27774037; PMCID: PMC5034003.
  31. Cater CM, Charlene AMQ. Alteration in blood components Comprehensive toxicology. 2018;10:249-293.
  32. Frazer RA. Use of Silver nanoparticles in HIV treatment protocols: A research proposal. J Nanomedic Nanotechnol. 2012;3(1):1000127-132.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert