Covid-19 Research

Mini Review

OCLC Number/Unique Identifier: 9060759929

Cell, Time and Knowledge: Some Conjectures

Biology Group    Start Submission

Diosey Ramon Lugo-Morin*

Volume2-Issue5
Dates: Received: 2021-05-14 | Accepted: 2021-05-19 | Published: 2021-05-27
Pages: 408-411

Abstract

The impact that the COVID-19 pandemic has had on global institutions and populations has been unprecedented. The health measures (e.g., confinement and social distancing) recommended by WHO and adopted by most nations in the world have not contained the spread of COVID-19. Vaccine development is expected to be a decisive element in controlling the pandemic, however, poor countries do not have immediate access to developed vaccines, which means that the COVID-19 pandemic will be present for some time among low-income countries. Against this daunting backdrop, it is necessary to explore more universal and inclusive ways of combating the COVID-19 pandemic and all future pandemics. Three conjectures are proposed that lead to a single path, unlocking the knowledge that cells have been able to accumulate over time. Although it may seem impossible in practice, the theory shows that knowledge exists to reach the frontiers of DNA.

FullText HTML FullText PDF DOI: 10.37871/jbres1250


Certificate of Publication




Copyright

© 2021 Lugo-Morin DR. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Lugo-Morin DR. Cell, Time and Knowledge: Some Conjectures. J Biomed Res Environ Sci. 2021 May 27; 2(5): 408-411. doi: 10.37871/jbres1250, Article ID: jbres1250


Subject area(s)

References


  1. Leeuwenhoek AV, Observationes D. Anthonii Lewenhoeck, de natis’e semine genitali animalculis. Philosophical Transactions of the Royal Society of London. 1677;12(142):1040-1046.
  2. Schleiden MJ. Beitrage zur Phytogenesis. Archives of Anatomy, Physiology and Scientific Medicine. 1838;2:137-176.
  3. Virchow RLK. The position of pathology among biological studies. Proceedings of the Royal Society of London. 1893;53(321-325):114-129. doi: 10.1098/rspl.1893.0015
  4. BAKER JR. The cell-theory; a restatement, history and critique. Q J Microsc Sci. 1948 Mar;89(Pt 1):103-25. PMID: 18860297.
  5. Baluska F, Volkmann D, Barlow PW. Eukaryotic cells and their cell bodies: Cell Theory revised. Ann Bot. 2004 Jul;94(1):9-32. doi: 10.1093/aob/mch109. Epub 2004 May 20. PMID: 15155376; PMCID: PMC4242365.
  6. Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus. 2021 Dec;12(1):21-41. doi: 10.1080/19491034.2021.1874135. PMID: 33435791; PMCID: PMC7889174.
  7. Wolpert L. Evolution of the cell theory. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):227-33. doi: 10.1098/rstb.1995.0106. PMID: 8577831.
  8. Ekundayo B, Bleichert F. Origins of DNA replication. PLoS Genet. 2019 Sep 12;15(9):e1008320. doi: 10.1371/journal.pgen.1008320. Erratum in: PLoS Genet. 2019 Dec 19;15(12):e1008556. PMID: 31513569; PMCID: PMC6742236.
  9. Mora Van Cauwelaert E, Arias Del Angel JA, Benítez M, Azpeitia EM. Development of cell differentiation in the transition to multicellularity: a dynamical modeling approach. Front Microbiol. 2015 Jun 23;6:603. doi: 10.3389/fmicb.2015.00603. PMID: 26157427; PMCID: PMC4477168.
  10. Wan KY, Jékely G. Origins of eukaryotic excitability. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190758. doi: 10.1098/rstb.2019.0758. Epub 2021 Jan 25. PMID: 33487111; PMCID: PMC7935092.
  11. Lyon P, Keijzer F, Arendt D, Levin M. Reframing cognition: getting down to biological basics. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190750. doi: 10.1098/rstb.2019.0750. Epub 2021 Jan 25. PMID: 33487107; PMCID: PMC7935032.
  12. Bechtel W, Bich L. Grounding cognition: heterarchical control mechanisms in biology. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190751. doi: 10.1098/rstb.2019.0751. Epub 2021 Jan 25. PMID: 33487110; PMCID: PMC7934967.
  13. Lyon P, Kuchling F. Valuing what happens: a biogenic approach to valence and (potentially) affect. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190752. doi: 10.1098/rstb.2019.0752. Epub 2021 Jan 25. PMID: 33487109; PMCID: PMC7935054.
  14. Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev. 2007 Sep 15;21(18):2271-6. doi: 10.1101/gad.1586107. PMID: 17875664; PMCID: PMC1973140.
  15. Sible J. Thanks for the memory. Nature. 2003; 426: 392-393. doi: 10.1038/426392a
  16. Macallan DC, Borghans JA, Asquith B. Human T Cell Memory: A Dynamic View. Vaccines (Basel). 2017 Feb 4;5(1):5. doi: 10.3390/vaccines5010005. PMID: 28165397; PMCID: PMC5371741.
  17. Apoorva M, Vijay K. The promising future in medicine: Nanobots. Biomedical Science and Engineering. 2014; 2(2): 42-47. doi: 10.12691/bse-2-2-3
  18. Chidchob P, Sleiman HF. Recent advances in DNA nanotechnology. Curr Opin Chem Biol. 2018 Oct;46:63-70. doi: 10.1016/j.cbpa.2018.04.012. Epub 2018 May 9. PMID: 29751162.
  19. Thiruchelvi R, Sikdar E, Das A, Rajakumari K. Nanobots in today´s world. Research Journal of Pharmacy and Technology. 2020; 13(4): 2033-2039. DOI: 10.5958/0974-360X.2020.00366.2
  20. Galdopórpora JM, Ibar A, Tuttolomondo MV, Desimone MF. Dual-effect core-shell polyphenol coated silver nanoparticles for tissue engineering. Nano-Structures & Nano-Objects 26: 100716. doi: 10.1016/j.nanoso.2021.100716
  21. Weismann A. Prof. Weismann’s Theory of Heredity. Nature. 1890;41:317–323. https://tinyurl.com/yp5pp5x2
  22. Ginsburg S, Jablonka E. Evolutionary transitions in learning and cognition. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 29;376(1821):20190766. doi: 10.1098/rstb.2019.0766. Epub 2021 Feb 8. PMID: 33550955; PMCID: PMC7935133.
  23. Lovejoy CO. The origin of man. Science. 1981 Jan 23;211(4480):341-50. doi: 10.1126/science.211.4480.341. PMID: 17748254.
  24. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567-90. doi: 10.1146/annurev-arplant-042110-103809. PMID: 21351878.
  25. Petit JD, Li ZP, Nicolas WJ, Grison MS, Bayer EM. Dare to change, the dynamics behind plasmodesmata-mediated cell-to-cell communication. Curr Opin Plant Biol. 2020 Feb;53:80-89. doi: 10.1016/j.pbi.2019.10.009. Epub 2019 Dec 2. PMID: 31805513.
  26. Grine FE and Fleagle JG. The First Humans: A Summary Perspective on the Origin and Early Evolution of the Genus Homo. In: Grine FE, Fleagle JG, Leakey RE editors. The First Humans-Origin and Early Evolution of the Genus Homo. Vertebrate Paleobiology and Paleoanthropology.
  27. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021 Feb 17;12(1):1088. doi: 10.1038/s41467-021-21246-9. PMID: 33597522; PMCID: PMC7889871.
  28. Perán M, García MA, Lopez-Ruiz E, Jiménez G, Marchal JA. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration. Materials (Basel). 2013 Mar 28;6(4):1333-1359. doi: 10.3390/ma6041333. PMID: 28809213; PMCID: PMC5452318.
  29. Mallapragada SK, Brenza TM, McMillan JM, Narasimhan B, Sakaguchi DS, Sharma AD, Zbarska S, Gendelman HE. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomedicine. 2015 Apr;11(3):715-29. doi: 10.1016/j.nano.2014.12.013. Epub 2015 Jan 31. PMID: 25652894; PMCID: PMC4628726.
  30. Mitra M. Medical nanobot for cell and tissue repair. International Robotics & Automation Journal. 2017; 2(6): 218-222. doi: 10.15406/iratj.2017.02.00038
  31. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021 Apr 1;184(7):1671-1692. doi: 10.1016/j.cell.2021.02.029. Epub 2021 Feb 16. PMID: 33743212; PMCID: PMC7885626.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search