Covid-19 Research

Original Article

OCLC Number/Unique Identifier: 8868670457

Repurposing Potential of Diminazene Aceturate as an Inhibitor of the E. coli DNA Gyrase B

Medicine Group    Start Submission

Varsha Dwivedi, Archana Ayyagari, Rakhi Chandran, Prerna Diwan, Sanjay Gupta and Vandana Gupta*

Volume1-Issue6
Dates: Received: 2020-10-23 | Accepted: 2020-10-30 | Published: 2020-10-31
Pages: 263-270

Abstract

Drug-resistant Escherichia coli (E. coli) has overburdened the healthcare facilities in recent years and is getting hard to combat, mandating search for novel therapeutics with a broad antibacterial spectrum and high chemotherapeutic index. The 24 kDa domain of DNA gyrase B that is involved in the ATPase activity has been reported to be a promising target for inhibitors. A PDB structure (1KZN) of the 24kD domain of gyrase B with the co-crystallized ligand clorobiocin was used for the docking studies to explore a library of 2924 FDA approved drugs from www.zinc.docking.org. FlexX docking module from Biosolve IT was used for receptor preparation and in silico docking experiments. Docking studies on the pocket created around the reference ligand clorobiocin revealed the best score with diminazene aceturate and it also demonstrated interactions with the crucial amino acids present within the pocket. Diminazene aceturate has been conventionally been used as an antiparasitic molecule in animals and it has also been demonstrated to exhibit repurposing potential in the treatment of disorders triggered due to overproduction of inflammatory cytokines, pulmonary hypertension, ischemia-induced cardiac pathophysiology, etc. among others. Findings from this study indicate the possibility of repurposing the age-old molecule diminazene aceturate into a DNA gyrase B antagonist to combat not just the drug-resistant E. coli but also other gram-negative ESKAPE pathogens. It may also aid in alleviating the inflammatory response induced in the body of the patients suffering from septicemia caused by a variety of Gram-negative bacterial pathogens.

FullText HTML FullText PDF DOI: 10.37871/jbres1153


Certificate of Publication




Copyright

© 2020 Dwivedi V, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Dwivedi V, Ayyagari A, Chandran R, Diwan P, Gupta S, Gupta V. Repurposing Potential of Diminazene Aceturate as an Inhibitor of the E. coli DNA Gyrase B. J Biomed Res Environ Sci. 2020 Oct 31; 1(6): 263-270. doi: 10.37871/jbres1153, Article ID: jbres1153


Subject area(s)

University/Institute

References


  1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004 Feb;2(2):123-40. doi: 10.1038/nrmicro818. PMID: 15040260.
  2. Wanda C R. Antimicrobial Mechanisms of Escherichia coli, Editor Amidou Samie, Escherichia coli- Recent advances in physiology, pathogenesis and biotechnological applications, Submitted :April 27th 2016 Reviewed: December 27th 2016 Published: July 12th 2017, DOI:10.5772/67363
  3. Johura FT, Tasnim J, Barman I, Biswas SR, Jubyda FT, Sultana M, George CM, Camilli A, Seed KD, Ahmed N, Alam M. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020 Jan 27;12:5. doi: 10.1186/s13099-020-0345-2. PMID: 32002025; PMCID: PMC6986151.
  4. Ventola C L. The antibiotic resistance crisis: part 1: Causes and threats. P T. 2015; 40(4):277-283.
  5. Ribeiro da Cunha B, Fonseca LP, Calado CRC. Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics (Basel). 2019 Apr 24;8(2):45. doi: 10.3390/antibiotics8020045. PMID: 31022923; PMCID: PMC6627412.
  6. Li Q, Chang W, Zhang H, Hu D, Wang X. The Role of Plasmids in the Multiple Antibiotic Resistance Transfer in ESBLs-Producing Escherichia coli Isolated From Wastewater Treatment Plants. Front Microbiol. 2019 Apr 3;10:633. doi: 10.3389/fmicb.2019.00633. PMID: 31001218; PMCID: PMC6456708.
  7. Aguirre L, Vidal A, Seminati C, Tello M, Redondo N, Darwich L, Martín M. Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. Porcine Health Manag. 2020 Apr 2;6:8. doi: 10.1186/s40813-020-00146-2. PMID: 32266079; PMCID: PMC7114809.
  8. Vanden Broeck A, Lotz C, Ortiz J, Lamour V. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat Commun. 2019 Oct 30;10(1):4935. doi: 10.1038/s41467-019-12914-y. PMID: 31666516; PMCID: PMC6821735.
  9. O’Dea MH, Tamura JK, Gellert M. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. J Biol Chem. 1996 Apr 19;271(16):9723-9. doi: 10.1074/jbc.271.16.9723. PMID: 8621650.
  10. Jackson AP, Maxwell A. Identifying the catalytic residue of the ATPase reaction of DNA gyrase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11232-6. doi: 10.1073/pnas.90.23.11232. PMID: 8248233; PMCID: PMC47956.
  11. Reece RJ, Maxwell A. DNA gyrase: structure and function. Crit Rev Biochem Mol Biol. 1991;26(3-4):335-75. doi: 10.3109/10409239109114072. PMID: 1657531.
  12. Gilbert EJ, Maxwell A. The 24 kDa N-terminal sub-domain of the DNA gyrase B protein binds coumarin drugs. Mol Microbiol. 1994 May;12(3):365-73. doi: 10.1111/j.1365-2958.1994.tb01026.x. PMID: 8065258.
  13. Priyanka, Singh V, Ekta, Katiyar D. Synthesis, antimicrobial, cytotoxic and E. coli DNA gyrase inhibitory activities of coumarinyl amino alcohols. Bioorg Chem. 2017 Apr;71:120-127. doi: 10.1016/j.bioorg.2017.01.019. Epub 2017 Feb 1. PMID: 28196603.
  14. Lafitte D, Lamour V, Tsvetkov PO, Makarov AA, Klich M, Deprez P, Moras D, Briand C, Gilli R. DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5’-methyl group of the noviose. Biochemistry. 2002 Jun 11;41(23):7217-23. doi: 10.1021/bi0159837. PMID: 12044152.
  15. Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis. 2001 Oct 15;33(8):1288-94. doi: 10.1086/322667. Epub 2001 Sep 14. PMID: 11565067.
  16. Towle TR, Kulkarni CA, Oppegard LM, Williams BP, Picha TA, Hiasa H, Kerns RJ. Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase. Bioorg Med Chem Lett. 2018 Jun 1;28(10):1903-1910. doi: 10.1016/j.bmcl.2018.03.085. Epub 2018 Mar 30. PMID: 29661533; PMCID: PMC5938125.
  17. Barnard FM, Maxwell A. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob Agents Chemother. 2001 Jul;45(7):1994-2000. doi: 10.1128/AAC.45.7.1994-2000.2001. PMID: 11408214; PMCID: PMC90591.
  18. Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother. 2002 Jun;46(6):1805-15. doi: 10.1128/aac.46.6.1805-1815.2002. PMID: 12019094; PMCID: PMC127264.
  19. Moreno E, Prats G, Sabaté M, Pérez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother. 2006 Feb;57(2):204-11. doi: 10.1093/jac/dki468. Epub 2006 Jan 3. PMID: 16390858.
  20. Fang Y, Lu Y, Zang X, Wu T, Qi X, Pan S, Xu X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci Rep. 2016 Apr 6;6:23634. doi: 10.1038/srep23634. PMID: 27049530; PMCID: PMC4822154.
  21. Cotman AE, Trampuž M, Brvar M, Kikelj D, Ilaš J, Peterlin-Mašič L, Montalvão S, Tammela P, Frlan R. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors. Arch Pharm (Weinheim). 2017 Aug;350(8). doi: 10.1002/ardp.201700087. Epub 2017 Jun 16. PMID: 28621824.
  22. Durcik M, Tammela P, Barančoková M, Tomašič T, Ilaš J, Kikelj D, Zidar N. Synthesis and Evaluation of N-Phenylpyrrolamides as DNA Gyrase B Inhibitors. ChemMedChem. 2018 Jan 22;13(2):186-198. doi: 10.1002/cmdc.201700549. Epub 2018 Jan 8. PMID: 29206345.
  23. Zidar N, Macut H, Tomašič T, Peterlin Mašič L, Ilaš J, Zega A, Tammela P, Kikelj D. New N-phenyl-4,5-dibromopyrrolamides as DNA gyrase B inhibitors. Medchemcomm. 2019 May 20;10(6):1007-1017. doi: 10.1039/c9md00224c. PMID: 31303999; PMCID: PMC6596384.
  24. Omar AM, Alswah M, Ahmed HEA, Bayoumi AH, El-Gamal KM, El-Morsy A, Ghiaty A, Afifi TH, Sherbiny FF, Mohammed AS, Mansour BA. Antimicrobial screening and pharmacokinetic profiling of novel phenyl-[1,2,4]triazolo[4,3-a]quinoxaline analogues targeting DHFR and E. coli DNA gyrase B. Bioorg Chem. 2020 Mar;96:103656. doi: 10.1016/j.bioorg.2020.103656. Epub 2020 Feb 10. PMID: 32062449.
  25. Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol. 2011 Nov;92(3):479-97. doi: 10.1007/s00253-011-3557-z. Epub 2011 Sep 9. PMID: 21904817; PMCID: PMC3189412.
  26. Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother. 2002 Jun;46(6):1805-15. doi: 10.1128/aac.46.6.1805-1815.2002. PMID: 12019094; PMCID: PMC127264.
  27. Brino L, Urzhumtsev A, Mousli M, Bronner C, Mitschler A, Oudet P, Moras D. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J Biol Chem. 2000 Mar 31;275(13):9468-75. doi: 10.1074/jbc.275.13.9468. PMID: 10734094.
  28. Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, Dwyer M, Chambers SP, Markland W, Botfield M, Raybuck SA. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Antimicrob Agents Chemother. 2003 Mar;47(3):1037-46. doi: 10.1128/aac.47.3.1037-1046.2003. PMID: 12604539; PMCID: PMC149296.
  29. Qi Y, Zhang J, Cole-Jeffrey CT, Shenoy V, Espejo A, Hanna M, et al. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension (Dallas), 2013, 62:746- 752 [PubMed:23959549]
  30. Rigatto K, Casali K R, Shenoy V, Katovich M J, Raizada M K. Diminazene aceturate improves autonomic modulation in pulmonary hypertension. Eur J Pharmacol. 2013, 713: 89-93 [PubMed:23665493]
  31. Kuriakose S, Uzonna JE. Diminazene aceturate (Berenil), a new use for an old compound? Int Immunopharmacol. 2014 Aug;21(2):342-5. doi: 10.1016/j.intimp.2014.05.027. Epub 2014 Jun 2. PMID: 24893117.
  32. Goru SK, Kadakol A, Malek V, Pandey A, Sharma N, Gaikwad AB. Diminazene aceturate prevents nephropathy by increasing glomerular ACE2 and AT2 receptor expression in a rat model of type1 diabetes. Br J Pharmacol. 2017 Sep;174(18):3118-3130. doi: 10.1111/bph.13946. Epub 2017 Aug 11. PMID: 28688122; PMCID: PMC5573423.
  33. Park SM, Koo HS. Purification of Caenorhabditis elegans DNA topoisomerase I. Biochim Biophys Acta. 1994 Sep 13;1219(1):47-54. doi: 10.1016/0167-4781(94)90245-3. PMID: 8086477.
  34. Ghildiyal R, Gupta S, Gabrani R, Joshi G, Gupta A, Chaudhary VK, Gupta V. In silico study of chikungunya polymerase, a potential target for inhibitors. Virusdisease. 2019 Sep;30(3):394-402. doi: 10.1007/s13337-019-00547-0. Epub 2019 Oct 26. PMID: 31803807; PMCID: PMC6864021.
  35. Oliveira CB, Rigo LA, Rosa LD, Gressler LT, Zimmermann CE, Ourique AF, DA Silva AS, Miletti LC, Beck RC, Monteiro SG. Liposomes produced by reverse phase evaporation: in vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi. Parasitology. 2014 May;141(6):761-9. doi: 10.1017/S0031182013002114. Epub 2014 Jan 28. PMID: 24476993.
  36. Yu W, MacKerell AD Jr. Computer-Aided Drug Design Methods. Methods Mol Biol. 2017;1520:85-106. doi: 10.1007/978-1-4939-6634-9_5. PMID: 27873247; PMCID: PMC5248982.
  37. Batool M, Ahmad B, Choi S. A Structure-Based Drug Discovery Paradigm. Int J Mol Sci. 2019 Jun 6;20(11):2783. doi: 10.3390/ijms20112783. PMID: 31174387; PMCID: PMC6601033.
  38. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008 Mar;153 Suppl 1(Suppl 1):S7-26. doi: 10.1038/sj.bjp.0707515. Epub 2007 Nov 26. PMID: 18037925; PMCID: PMC2268060.
  39. March-Vila E, Pinzi L, Sturm N, Tinivella A, Engkvist O, Chen H, Rastelli G. On the Integration of In Silico Drug Design Methods for Drug Repurposing. Front Pharmacol. 2017 May 23;8:298. doi: 10.3389/fphar.2017.00298. PMID: 28588497; PMCID: PMC5440551.
  40. Han D, Yoon W-K, Hyun C. Cerebellar encephalopathy from diminazene aceturate (beneril) toxicity in a dog. Korean J Vet Res, 2014 54(3) :193-196, doi:10.14405/kjvr.2014.54.3.193


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search