Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 8609180401

Effects of Irradiance and Different Nitrogen and Carbon Concentrations on the Minerals Accumulation in Scenedesmus obliquus Biomass

Biology Group    Start Submission

Jimenez-Veuthey Mariana*, Zapata Luz Marina, Vezzosi-Zoto Gina, Sacks Natalia, Flores Agustina, Zampedri Patricia and Zampedri Carolina

Volume1-Issue2
Dates: Received: 2020-05-02 | Accepted: 2020-06-09 | Published: 2020-06-11
Pages: 011-20

Abstract

Microalgae are capable of absorbing and concentrating constituent elements that have a wide variety of applications in agriculture, food industry, and medicine. Microalgae chemical composition change according to internal and external factors. In this study, the effect of irradiance, sodium nitrate and sodium acetate concentration on the accumulation of essential minerals in Scenedesmus obliquus biomass were evaluated using 23 factorial screening designs. The simultaneous effect of the three experimental factors was studied using three levels for each parameter (irradiance: 36.71, 69.50, 102.30 μE m-2 s-1, sodium nitrate: 0.27, 44.00, 87.73 g L-1 and sodium acetate: 0.00, 2.50, 5.02 g L-1). The response variables were the minerals concentration of Na, K, Ca, Mg, Fe, Zn and Mn. Results show that each mineral has an optimal operation condition in order to improve its concentration in the microalgae biomass. A significant interaction between the variables was observed, which has direct effects on the minerals accumulation in the microalgae biomass. Under these conditions, the maximum concentration of K (1515.77 [mg (100gdw)-1]), Ca (2744.24 [mg (100gdw)-1]), Mg (9697.65 [mg (100gdw)-1]), Fe (2932.42 [mg (100gdw)-1]), Mn (38.48 [mg (100gdw)-1]), Zn (324.00 [mg (100gdw)-1]) and the minimum concentration of Na (5607.20 [mg (100gdw)-1]) were obtained from the microalga biomass. Thus, Scenedesmus obliquus biomass was characterized as good essential mineral source and confirmed to be potentially valuable ingredient for utilization in the food industry.

FullText HTML FullText PDF DOI: 10.37871/jels1114


Certificate of Publication




Copyright

How to cite this article

Mariana JV, Marina ZL, Gina VZ, Natalia S, Agustina F, Patricia Z, Carolina Z. Effects of Irradiance and Different Nitrogen and Carbon Concentrations on the Minerals Accumulation in Scenedesmus obliquus Biomass. J Biomed Res Environ Sci. 2020 Jun 11; 1(2): 011-020. doi: 10.37871/jels1114


Subject area(s)

University/Institute

References


  1. Gutiérrez-Cuesta R, González García KL, Valdés Iglesias OR, Hernández Rivera Y, Acosta Suárez Y. Algas marinas como fuente de compuestos bioactivos en beneficio de la salud humana: Un artículo de revisión. Revista de Ciencias Biológicas y de la Salud. 2016; 18: 20-27. https://bit.ly/37i9qiu
  2. Hira K, Tariq RM, Sultana V, Ara J, Ehteshamul-Haque S. Effect of seaweeds occurring at Karachi coast on mosquito larvae and liver function in rats. Pak J Pharm Sci. 2017; 30: 387-391. PubMed: https://pubmed.ncbi.nlm.nih.gov/28649061/
  3. Latham MC. In Nutrición humana en el mundo en desarrollo. 2002. FAO, New York, USA. https://bit.ly/2AUVXkS
  4. McDowell LR. In Minerals in Animal and human nutrition, 2nd Ed. 2003. Elsevier Science, Amsterdam.
  5. Salgueiro MJ, Zubilaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR. The role of zinc in the growth and development of children. Nutrition. 2002; 18: 510-519. https://bit.ly/2ApnR8A
  6. Pedraza DF, Rocha ACD, Queiroz EO, Sousa CPC. Zinc nutritional status in children attending public daycare centers in the state of Paraíba, Brazil. J Nutr. 2011; 24: 539-552. https://bit.ly/3hkQXGH
  7. Kodoth-Prabhakaran N. Mineral deficiency and behavior vis-à-vis the central nervous system. In: food and human responses. Springer, Cham Food and Human Responses. 2020; 83-97.
  8. Pereira GAP, Genaro OS, Pinheiro MM, Szejnfeld VL, Martini LA. Dietary calcium: Strategies to optimize intake. Braz J Rheumatol. 2009; 49: 164-180. https://bit.ly/3dTDQdE
  9. Gómez AL, López JA, Rodríguez A, Fortiz J, Martínez LR, Apolinar A, et al. Producción de compuestos fenólicos por cuatro especies de microalgas marinas sometidas a diferentes condiciones de iluminación. Lat Am J Aquat Res. 2016; 44: 137-143. https://bit.ly/2UuyRIA
  10. Singh UB, Ahluwalia AS. Microalgae: A promising tool for carbon sequestration. Mitig Adapt Strategy Glob Change. 2013; 18: 3-95. https://bit.ly/30ygyWD
  11. Draaisma RB, Wijfels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ. Food commodities from microalgae. Curr Opin Biotechnol. 2013; 24: 169-177. PubMed: https://pubmed.ncbi.nlm.nih.gov/23084075/
  12. Ramírez-Mérida LG, Ragagnin de Menezes C, Queiroz-Zepka L, Jacob-Lopes E. Microalgas: Potencial para la producción de compuestos bioactivos nanoencapsulados. Ciência e Natura. 2015; 37: 7-17.
  13. Cordero BF, Obraztsova I, Couso I, León R, Vargs MA, Rodríguez H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs. 2011; 9: 1607-1624. PubMed: https://pubmed.ncbi.nlm.nih.gov/22131961/
  14. González-González LM. Influencia de la deficiencia de nitrógeno y fósforo en las interacciones competitivas entre Chlorella vulgaris y Scenedesmus acutus. Tesis Magister. Universidad Nacional de Colombia. 2010. https://bit.ly/3cQZyNZ
  15. Ördög V, Stirk WA, Bálint P, Van Staden J, Lovász C. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol. 2012; 24: 907-914. https://bit.ly/2UB5SmB
  16. Jiménez-Veuthey M, Vidal MN, Cabrera C, Páramo J, Bertoni M, Bordet HF, et al. A simple, efficient and economical method for isolation of Scenedesmus obliquus (Chlorophyceae) from freshwater sample (Embalse Salto Grande, Argentina). Asian J Microbiol Biotechnol Environ Sci. 2018; 20: 6-12. https://bit.ly/3dZnCji
  17. AOAC (Association of Official Analytical Chemistry). Official methods of analysis, 17th ed. 2000. Washington, DC: USA. https://bit.ly/2Ys0DGG
  18. Tokusoglu Ö, Ünal MK. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci. 2003; 68: 1144-1148. https://bit.ly/30uOHXo
  19. Hernández D, Molinuevo-Salces B, Riaño B, Larrán-García AM, Tomás-Almenar C, García-González MC. Recovery of protein concentrates from microalgal biomass grown in manure for fish feed and valorization of the by-products through anaerobic digestion. Front Sustain Food Syst. 2018; 28: 1-11. https://bit.ly/3feVJng
  20. FDA (Food and Drug Administration). Researchers Accessed. 2019.
  21. Muniz Moreira L, Ribeiro AC, Duarte FA, Greque de Morais M, Almeida de Souza Soares L. Spirulina platensis biomass cultivated in Southern Brazil as a source of essential minerals and other nutrients. Afr J Food Sci. 2013; 7: 451-455. https://bit.ly/3cT7kqs
  22. Braga EO, Mendonça LG. Discution of the rational use of human diets, with focus to its main constituents: linseed and quinoa. Perspec Sci Technol. 2010; 2: 32-43.
  23. Karmakar K, Muslim T, Rahman M. Chemical composition of some leafy vegetables of Bangladesh. Dhaka Univ J Sci. 2013; 61: 199-201. https://bit.ly/2XPbziC
  24. Mafra D, Cozzolino SMF. The importance of zinc in human nutrition. J Nutr. 2004; 17: 79-87. https://bit.ly/2B1XGF6
  25. USDA. National nutrient database for standard reference. US Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory. 2018, release 28: 9040. https://bit.ly/2UyYDve


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search